【題目】對于定義在上的函數
,若函數
滿足:①在區間
上單調遞減;②存在常數
,使其值域為
,則稱函數
為
的“漸近函數”.
(1)設,若
在
上有解,求實數
取值范圍;
(2)證明:函數是函數
,
的漸近函數,并求此時實數
的值;
(3)若函數,
,
,證明:當
時,
不是
的漸近函數.
科目:高中數學 來源: 題型:
【題目】如圖,已知是圓
的直徑,
,
在圓上且分別在
的兩側,其中
,
.現將其沿
折起使得二面角
為直二面角,則下列說法不正確的是( )
A.,
,
,
在同一個球面上
B.當時,三棱錐
的體積為
C.與
是異面直線且不垂直
D.存在一個位置,使得平面平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.
(1)若參與游戲的家長對小孩的飲食習慣完全不了解.
(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;
(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);
(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年國慶黃金周影市火爆依舊,《我和我的祖國》、《中國機長》、《攀登者》票房不斷刷新,為了解我校高三2300名學生的觀影情況,隨機調查了100名在校學生,其中看過《我和我的祖國》或《中國機長》的學生共有80位,看過《中國機長》的學生共有60位,看過《中國機長》且看過《我和我的祖國》的學生共有50位,則該校高三年級看過《我和我的祖國》的學生人數的估計值為( )
A.1150B.1380C.1610D.1860
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左焦點為
,離心率為
,
為圓
的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點的直線
交橢圓于
兩點,過
且與
垂直的直線
與圓
交于
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市房管局為了了解該市市民年
月至
年
月期間買二手房情況,首先隨機抽樣其中
名購房者,并對其購房面積
(單位:平方米,
)進行了一次調查統計,制成了如圖
所示的頻率分布直方圖,接著調查了該市
年
月至
年
月期間當月在售二手房均價
(單位:萬元/平方米),制成了如圖
所示的散點圖(圖中月份代碼
分別對應
年
月至
年
月).
(1)試估計該市市民的購房面積的中位數;
(2)現采用分層抽樣的方法從購房面積位于的
位市民中隨機抽取
人,再從這
人中隨機抽取
人,求這
人的購房面積恰好有一人在
的概率;
(3)根據散點圖選擇和
兩個模型進行擬合,經過數據處理得到兩個回歸方程,分別為
和
,并得到一些統計量的值如下表所示:
0.000591 | 0.000164 | |
0.006050 |
請利用相關指數判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測出
年
月份的二手房購房均價(精確到
)
(參考數據),
,
,
,
,
,
(參考公式)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市房管局為了了解該市市民年
月至
年
月期間買二手房情況,首先隨機抽樣其中
名購房者,并對其購房面積
(單位:平方米,
)進行了一次調查統計,制成了如圖
所示的頻率分布直方圖,接著調查了該市
年
月至
年
月期間當月在售二手房均價
(單位:萬元/平方米),制成了如圖
所示的散點圖(圖中月份代碼
分別對應
年
月至
年
月).
(1)試估計該市市民的購房面積的中位數;
(2)從該市年
月至
年
月期間所有購買二手房中的市民中任取
人,用頻率估計概率,記這
人購房面積不低于
平方米的人數為
,求
的數學期望;
(3)根據散點圖選擇和
兩個模型進行擬合,經過數據處理得到兩個回歸方程,分別為
和
,并得到一些統計量的值如下表所示:
請利用相關指數判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測出
年
月份的二手房購房均價(精確到
)
(參考數據),
,
,
,
,
,
.
(參考公式).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:極坐標與參數方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標方程;
(2)當時,求直線l與圓O公共點的一個極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點
到其焦點的距離為
.
(1)求與
的值;
(2)若斜率為的直線
與拋物線
交于
、
兩點,點
為拋物線
上一點,其橫坐標為1,記直線
的斜率為
,直線
的斜率為
,試問:
是否為定值?并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com