精英家教網 > 高中數學 > 題目詳情

【題目】已知四棱錐的底面為直角梯形,,°,底面,且的中點.

(1)證明平面平面

(2)求所成角的余弦值;

(3)求平面與平面所成二面角(銳角的余弦值.

【答案】(1)見解析;(2);(3)

【解析】

試題(1)利用面面垂直的性質,證明CD⊥平面PAD.

(2)建立空間直角坐標系,寫出向量的坐標,然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

試題解析:證明:以為坐標原點長為單位長度,如圖建立空間直角坐標系,則各點坐標為.

(1)證明:因

由題設知,且是平面內的兩條相交直線,由此得.又在面上,故面⊥面.

(2)因

(3)平面的一個法向量設為,

平面的一個法向量設為,

所求二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在矩形中,,為邊的中點.將△沿翻折,得到四棱錐.設線段的中點為,在翻折過程中,有下列三個命題:

總有平面

三棱錐體積的最大值為;

存在某個位置,使所成的角為

其中正確的命題是____.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校為增加應屆畢業生就業機會,每年根據應屆畢業生的綜合素質和學業成績對學生進行綜合評估,已知某年度參與評估的畢業生共有2000名,其評估成績近似的服從正態分布.現隨機抽取了100名畢業生的評估成績作為樣本,并把樣本數據進行了分組,繪制了頻率分布直方圖:

(1)求樣本平均數和樣本方差(同一組中的數據用該組區間的中點值作代表);

(2)若學校規定評估成績超過分的畢業生可參加三家公司的面試.

(。┯脴颖酒骄鶖作為的估計值,用樣本標準差作為的估計值,請利用估計值判斷這2000名畢業生中,能夠參加三家公司面試的人數;

(ⅱ)若三家公司每家都提供甲、乙、丙三個崗位,崗位工資表如下:

公司

甲崗位

乙崗位

丙崗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李華同學取得了三個公司的面試機會,經過評估,李華在三個公司甲、乙、丙三個崗位的面試成功的概率均為,李華準備依次從三家公司進行面試選崗,公司規定:面試成功必須當場選崗,且只有一次機會.李華在某公司選崗時,若以該崗位工資與未進行面試公司的工資期望作為抉擇依據,問李華可以選擇公司的哪些崗位?

并說明理由.

附:,若隨機變量,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中,真命題的個數是( 。

①若“p∨q”為真命題,則“p∧q”為真命題;

②“a∈(0,+∞),函數y=在定義域內單調遞增”的否定;

③l為直線,α,β為兩個不同的平面,若l⊥β,α⊥β,則l∥α;

④“x∈R,≥0”的否定為“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點E、F分別為棱AB、PD的中點.

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面ABCD為直角梯形,,,側面底面ABCD,,

PB的中點為E,求證:平面PCD;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

)求曲線在點處的切線方程;

)當時,求證:函數有且僅有一個零點;

)當時,寫出函數的零點的個數.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數 .

(1)討論函數的單調性;

(2)若函數有兩個零點,,求的取值范圍,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求函數的單調區間;

2)若恒成立,求實數的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视