【題目】古希臘數學家阿波羅尼奧斯發現:平面上到兩定點,
距離之比為常數
且
的點的軌跡是一個圓心在直線
上的圓,該圓簡稱為阿氏圓.根據以上信息,解決下面的問題:如圖,在長方體
中,
,點
在棱
上,
,動點
滿足
.若點
在平面
內運動,則點
所形成的阿氏圓的半徑為________;若點
在長方體
內部運動,
為棱
的中點,
為
的中點,則三棱錐
的體積的最小值為___________.
科目:高中數學 來源: 題型:
【題目】已知橢圓C:的離心率為
,且過點A(2,1).
(1)求C的方程:
(2)點M,N在C上,且AM⊥AN,AD⊥MN,D為垂足.證明:存在定點Q,使得|DQ|為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左焦點
,點
在橢圓
上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)經過圓:
上一動點
作橢圓
的兩條切線,切點分別記為
,
,直線
,
分別與圓
相交于異于點
的
,
兩點.
(i)求證:;
(ii)求的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程為
(
為參數).以直角坐標系的原點
為極點,
軸的正半軸為極軸建立坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)若過點的直線
與
交于
,
兩點,與
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線:
的左、右焦點分別為
,
為坐標原點,
是雙曲線上在第一象限內的點,直線
分別交雙曲線
左、右支于另一點
,
,且
,則雙曲線
的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人堅持跑步鍛煉,根據他最近20周的跑步數據,制成如下條形圖:
根據條形圖判斷,下列結論正確的是( )
A.周跑步里程逐漸增加
B.這20周跑步里程平均數大于30km
C.這20周跑步里程中位數大于30km
D.前10周的周跑步里程的極差大于后10周的周跑步里程的極差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為梯形,
,且
,
是邊長為2的正三角形,頂點
在
上的射影為點
,且
,
,
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
過點
,傾斜角為
.
(1)求曲線的直角坐標方程與直線l的參數方程;
(2)設直線與曲線
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
是拋物線
上的兩個不同的點,
是坐標原點.若直線
與
的斜率之積為
,則( ).
A.B.以
為直徑的圓的面積大于
C.直線過定點
D.點
到直線
的距離不大于2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com