【題目】已知橢圓C: =1(a>b>0)與y軸的交點為A,B(點A位于點B的上方),F為左焦點,原點O到直線FA的距離為
b.
(1)求橢圓C的離心率;
(2)設b=2,直線y=kx+4與橢圓C交于不同的兩點M,N,求證:直線BM與直線AN的交點G在定直線上.
【答案】
(1)解:設F的坐標為(﹣c,0),依題意有bc= ab,
∴橢圓C的離心率e= =
.
(2)解:若b=2,由(1)得a=2 ,∴橢圓方程為
.
聯立方程組
化簡得:(2k2+1)x2+16kx+24=0,
由△=32(2k2﹣3)>0,解得:k2>
由韋達定理得:xM+xN= …①,xMxN=
…②
設M(xM,kxM+4),N(xN,kxN+4),
MB方程為:y= x﹣2,…③
NA方程為:y= x+2,…④
由③④解得:y=
= =
=1
即yG=1,
∴直線BM與直線AN的交點G在定直線上
【解析】(1)設F的坐標為(﹣c,0),原點O到直線FA的距離為 b,列出方程,即可求解橢圓的離心率.(2)求出橢圓方程,聯立方程組
,通過韋達定理,設M(xM , kxM+4),N(xN , kxN+4),
求出MB方程,NA方程,求出交點坐標,推出結果.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:
即可以解答此題.
科目:高中數學 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變為原來的2倍,得曲線C.
(1)寫出C的參數方程;
(2)設直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推動乒乓球運動的發展,某乒乓球比賽允許不同協會的運動員組隊參加. 現有來自甲協會的運動員3名,其中種子選手2名;乙協會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協會”求事件
發生的概率
(2)設為選出的4人中種子選手的人數,求隨機變量
的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當前最大流量的比值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(﹣1,4)及圓C:(x﹣2)2+(y﹣3)2=1.則下列判斷正確的序號為 .
①點P在圓C內部;
②過點P做直線l,若l將圓C平分,則l的方程為x+3y﹣11=0;
③過點P做直線l與圓C相切,則l的方程為y﹣4=0或3x+4y﹣13=0;
④一束光線從點P出發,經x軸反射到圓C上的最短路程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m,n是兩條不同直線,,
是兩個不同平面,則下列命題正確的是
A.若,
垂直于同一平面,則
與
平行
B.若m,n平行于同一平面,則m與n平行
C.若,
不平行,則在
內不存在與
平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 右支上非頂點的一點A關于原點O的對稱點為B,F為其右焦點,若AF⊥FB,設∠ABF=θ且
,則雙曲線離心率的取值范圍是( )
A.
B.
C.
D.(2,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com