精英家教網 > 高中數學 > 題目詳情
已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=
OM
ON
(O為坐標原點).若f(x)的最小正周期為2,并且當x=
1
3
時,f(x)的最大值為5.
(1)求函數f(x)的表達式;
(2)對任意的整數n,在區間(n,n+1)內是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.
(1)由題設條件知f(x)=asinωx+bcosωx=5sin(ωx+φ),
由已知得
ω
=2
f(
1
3
)=5
,得ω=π,φ=
π
6
,
所以f(x)=5sin(πx+
π
6
),.
(2)曲線f(x) 有對稱軸x=x0的充要條件是5sin(πx0+
π
6
)=±5.即πx0+
π
6
=kπ+
π
2
即x0=k+
1
3
,k∈Z,
令n<k+
1
3
<n+1 得k=n (n∈Z),
所以在區間(n,n+1)內存在曲線f(x)的對稱軸,
其方程是x=n+
1
3
,n∈Z,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=
OM
ON
(O為坐標原點).若f(x)的最小正周期為2,并且當x=
1
3
時,f(x)的最大值為5.
(1)求函數f(x)的表達式;
(2)對任意的整數n,在區間(n,n+1)內是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M(a,b)由
x≥0
y≥0
x+y≤4
確定的平面區域內,N(a+b,a-b)所在平面區域的面積為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=數學公式(O為坐標原點).若f(x)的最小正周期為2,并且當x=數學公式時,f(x)的最大值為5.
(1)求函數f(x)的表達式;
(2)對任意的整數n,在區間(n,n+1)內是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2010年高三備考數學好題系列(09)(解析版) 題型:解答題

已知M(a,b),N(sinωx,cosωx)(ω>0),記f(x)=(O為坐標原點).若f(x)的最小正周期為2,并且當x=時,f(x)的最大值為5.
(1)求函數f(x)的表達式;
(2)對任意的整數n,在區間(n,n+1)內是否存在曲線y=f(x)的對稱軸?若存在,求出此對稱軸方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视