如圖,三棱柱是直棱柱,
.點
分別為
和
的中點.
(1)求證:平面
;
(2)求點到平面
的距離.
(1)參考解析;(2)
解析試題分析:(1)要證明平面
;只需要在平面
內找到一條直線一該直線平行,由連結
,以及
根據三角形的中位線定理可得到
∥
,即可得到答案.
(2)求點到平面
的距離,通過等體積法將
.分別求出三角形ABC的面積和點M到平面ABC的高即可得到三棱錐B-ACM的體積.求出三角形ACM的面積,由
即可求出所求的結論.
(1)證明:連接,
, 1分
由已知得四邊形是矩形,
∴,
,
三點共線且
是
的中點,
又∵是
的中點,
∴∥
. 4分
又∵平面
,
平面
,
∴∥平面
. 6分
(2)設點到平面
的距離為
.
由已知得平面
,∴
.
∵,
,
∴.∴
.
∵,
是為
的中點,
平面
,
∴點到平面
的距離是
,
. 9分
∵,∴
,∴
.
∴點到平面
的距離是
. 12分
考點:1.線面平行.2.等積法的應用.
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐中,底面
是邊長為
的正方形,側面
底面,且
,
、
分別為
、
的中點.
(1)求證:平面
;
(2)求證:面平面
;
(3)在線段上是否存在點
,使得二面角
的余弦值為
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側棱垂直于底面,側棱長是,D是AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大。
(3)求直線AB1與平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC.
(2)求證:平面PAC⊥平面PCB.
(3)設二面角M—BP—C的大小為θ,求cos θ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓錐母線長為6,底面圓半徑長為4,點是母線
的中點,
是底面圓的直徑,底面半徑
與母線
所成的角的大小等于
.
(1)當時,求異面直線
與
所成的角;
(2)當三棱錐的體積最大時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且底面ABCD,
,E是PA的中點.
(1)求證:平面平面EBD;
(2)若PA=AB=2,求三棱錐P-EBD的高.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com