精英家教網 > 高中數學 > 題目詳情

已知圓C的圓心與點關于直線對稱.直線與圓C相交于兩點,且,求圓C的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知圓,直線
(Ⅰ)若相切,求的值;
(Ⅱ)是否存在值,使得相交于兩點,且(其中為坐標原點),若存在,求出,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,曲線的參數方程是
是參數).
(1)寫出曲線的直角坐標方程和曲線的普通方程;
(2)求的取值范圍,使得,沒有公共點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程;
(2)設P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于
點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)在直角坐標系中,以坐標原點為圓心的圓與直線:相切.
(1)求圓的方程;
(2)若圓上有兩點關于直線對稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 已知圓的圓心軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.
(I)求圓的方程;
(II)設,若圓的內切圓,求△的面積
的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設O為坐標原點,曲線x2+y2+2x-6y+1=0上有兩點P、Q,滿足關于直線x+my+4=0對稱,又滿足·=0.
(1)求m的值;
(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一個圓C和軸相切,圓心在直線上,且在直線上截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,圓C:,直線.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视