試題分析:(Ⅰ)證明:∵BC=2,CC
1=4,∠BCC
1=60°由余弦定理可得BC
1=

∴BC
2+BC
12=CC
12 ∴∠CBC
1=90° ∴C
1B⊥CB 2分
又AB⊥面BB
1C
1C ∴C
1B⊥AB,AB∩CB=B ∴C
1B⊥平面ABC,
又平面A
1B
1C
1∥平面ABC ∴ C
1B⊥平面A
1B
1C
1 4分
(Ⅱ)∵平面A
1B
1C
1∥平面ABC
∴A
1B與平面ABC所成的角等于A
1B與平面A
1B
1C
1所成的角 5分
由(Ⅰ)知C
1B⊥平面ABC ∴C
1B⊥平面A
1B
1C
1 ∴∠BA
1C
1即為A
1B與平面A
1B
1C
1所成的角 6分
∠BC
1 A
1=90° A
1C
1
∴

8分
(Ⅲ)CE=BC=2,∠BCE=60° ∴BE=2 ∠EC
1B
1=120° C
1E=C
1B
1=2 ∴EB
1
∴BE
2+B
1E
2=B
1B
2 ∴∠BEB
1=90°即B
1E⊥BE 又AB⊥平面BCC
1B
1∴B
1E⊥AE ∴∠AEB為二面角A—EB
1—B的平面角 9分

10分
又∵A
1B
1⊥平面B
1EB ∴平面A
1B
1E⊥平面B
1EB
∴二面角A—EB
1—A
1的大小為

=90°-∠AEB 11分

即所求二面角的正切值為

13分
解法二:易知

,

面

,

,

面

,
∴異面直線

與

所成角即為所求二面角的大小. 10分
∵

∴

即為異面直線

與

所成角, 11分
易得

,即所求二面角的正切值為

13分
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個基本思路。注意運用轉化與化歸思想,將空間問題轉化成平面問題。