精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=a+
2
bsin(x+
π
4
)
的圖象過點(0,1),當x∈[0,
π
2
]
時,f(x)的最大值為2
2
-1.
(1)求f(x)的解析式;
(2)寫出由f(x)經過平移 變換得到的一個奇函數g(x)的解析式,并說明變化過程.
(1)由題意f(0)=a+b①
x∈[0,
π
2
]
,則x+
π
4
∈[
π
4
,
4
]
1≤
2
sin(x+
π
4
)≤
2

當b>0時,fmax(x)=f(
π
4
)=a+
2
b
=2
2
-1
②由①②得a=-1,b=2
當b<0時,fmax(x)=f(0)=a+b=2
2
-1
③由①③得,a,b無解
所以f(x)=2
2
sin(x+
π
4
)-1

(2)由f(x)=2
2
sin(x+
π
4
)-1
沿x軸向右平移
π
4
個單位再向上平移1個單位得g(x).所以g(x)=2
2
sinx
是奇函數,
所以由f(x)沿x軸向右平移
π
4
個單位再向上平移1個單位得g(x).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x+1

(1)求證:不論a為何實數f(x)總是為增函數;
(2)確定a的值,使f(x)為奇函數;
(3)當f(x)為奇函數時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數f(x)的大致圖象;
(2)求函數f(t)-9的零點;
(3)設q(t)=f(t+1)-f(t)(t∈R),求函數q(t)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
1
2x+1
,若f(x)為奇函數,則a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
a(x-1)x2
,其中a>0.
(I)求函數f(x)的單調區間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區間[1,e]上的最小值.(其中e為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數,求a的值;
(3)考察f(x)在定義域上單調性的情況,并證明你的結論.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视