精英家教網 > 高中數學 > 題目詳情
已知定義在(-1,1)上的f(x)滿足:對?x,y∈(-1,1),均有f(x)+f(y)=f(
x+y
1+xy
)
,且x>0時,f(x)>0,則函數y=f(x)在定義域上的奇偶性與增減性為( 。
分析:要判定函數f(x)在(-1,1)上的奇偶性,只需判定f(-x)與f(x)的關系,先令x=y=0求出f(0),然后令y=-x即可判定,最后根據函數單調性的定義進行判定單調性.
解答:解:∵f(0)+f(0)=f(0)⇒f(0)=0
∴令y=-x,f(-x)+f(x)=f(0)=0⇒f(-x)=-f(x)
∴f(x)在(-1,1)上是奇函數.
當-1<x<y<1時,
∵f(x)-f(y)=f(x)+f(-y)=f(
x-y
1-xy
),且
x-y
1-xy
<0,
∵x>0時,f(x)>0,因為f(x)為奇函數,若x<0,可得-x>0,f(-x)>0,-f(x)>0,可得f(x)<0,

∴f(x)-f(y)=f(
x-y
1-xy
)<0,可得f(x)<f(y),
∴f(x)為增函數,
∴f(x)為奇函數且為增函數,
故選A;
點評:本題主要考查抽象函數的奇偶性與單調性性,屬于中檔題,函數的奇偶性是函數在定義域上的“整體”性質,單調性是函數的“局部”性質.
練習冊系列答案
相關習題

科目:高中數學 來源:蚌埠二中2008屆高三12月份月考數學試題(理) 題型:044

已知定義在實數集合R上的奇函數f(x)有最小正周期為2,且當x∈(0,1)時,

(1)求函f(x)在[-1,1]上的解析式;

(2)判斷f(x)在(0,1)上的單調性;

(3)當λ取何值時,方程f(x)=λ在[-1,1]上有實數解?

查看答案和解析>>

科目:高中數學 來源:山東省濟南市2012屆高三上學期12月月考數學試題 題型:044

已知定義在實數集R上的奇函數f(x)有最小正周期2,且當x∈(0,1)時,f(x)=

(Ⅰ)求函數f(x)在(-1,1)上的解析式;

(Ⅱ)判斷f(x)在(0,1)上的單調性;

(Ⅲ)當λ取何值時,方程f(x)=λ在(-1,1)上有實數解?

查看答案和解析>>

科目:高中數學 來源:2012-2013學年遼寧省五校協作體高二(上)聯合競賽數學試卷(文科)(解析版) 題型:解答題

已知定義在區間[-1,1]上的函數為奇函數..
(1)求實數b的值.
(2)判斷函數f(x)在區間(-1,1)上的單調性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省贛州市會昌中學高三(上)第二次月考數學試卷(理科)(解析版) 題型:解答題

已知定義在區間[-1,1]上的函數為奇函數..
(1)求實數b的值.
(2)判斷函數f(x)在區間(-1,1)上的單調性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江西省吉安市白鷺洲中學高三(上)第一次月考數學試卷(文科)(解析版) 題型:解答題

已知定義在區間[-1,1]上的函數為奇函數..
(1)求實數b的值.
(2)判斷函數f(x)在區間(-1,1)上的單調性,并證明你的結論.
(3)f(x)在x∈[m,n]上的值域為[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视