【題目】已知 ,函數 f(x)=x2(x-a) ,若f'(1)=1 .
(1)求 a 的值并求曲線 y=f(x) 在點(1,f(1)) 處的切線方程y=g(x) ;
(2)設h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.
【答案】
(1)
解:f'(x)=3x2-2ax ,由 f'(1)=1 得 3-2a=1 ,所以 a=1 ;
當 a=1 時,f(x)=x3-x2,f(1)=0 ,又 f'(1)=1 ,
所以曲線y=f(x) 在(1,f(1)) 處的切線方程為 y-0=x-1 ,即g(x)=x-1 ;
(2)
【解答】
解:由(1)得 ,
又h(0)=-1,h(1)=1, ,
∴ h(x) 在 [0,1] 上有最大值1,有最小值 .
【解析】本題主要考查了利用導數求閉區間上函數的最值、利用導數研究曲線上某點切線方程,解決問題的關鍵是根據導數的幾何意義求解切線方程以及函數的最值,屬于中檔題
【考點精析】本題主要考查了函數的最大(小)值與導數的相關知識點,需要掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,
的四個頂點構成的四邊形面積為
.
(1)求橢圓的方程;
(2)在橢圓上是否存在相異兩點
,使其滿足:①直線
與直線
的斜率互為相反數;②線段
的中點在
軸上,若存在,求出
的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg(x+1),g(x)=2lg(2x+t)(t為參數).
(1)寫出函數f(x)的定義域和值域;
(2)當x∈[0,1]時,如果f(x)≤g(x),求參數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點 P(2,2)的直線m與曲線C交于A,B兩點,設當△AOB的面積為4時(O為坐標原點),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線E:x2=2py(p>0) 的焦點F作斜率分別為 k1,k2 的兩條不同的直線 l1,l2 ,且k1+k2=2 ,l1與E 相交于點A,B, l2與E 相交于點C,D.以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為 l .
(1)若k1>0,k2>0 ,證明;;
(2)若點M到直線 l 的距離的最小值為 ,求拋物線E的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定理:“實數m,n為常數,若函數h(x)滿足h(m+x)+h(m﹣x)=2n,則函數y=h(x)的圖象關于點(m,n)成中心對稱”.
(1)已知函數f(x)= 的圖象關于點(1,b)成中心對稱,求實數b的值;
(2)已知函數g(x)滿足g(2+x)+g(﹣x)=4,當x∈[0,2]時,都有g(x)≤3成立,且當x∈[0,1]時,g(x)=2k(x﹣1)+1 , 求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com