(12分)已知三棱柱的三視圖如圖所示,
其中正視圖
和側視圖
均為矩形,俯視圖
中,
。
(I)在三棱柱中,求證:
;
(II)在三棱柱中,若
是底邊
的中點,求證:
平面
;
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=
.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)設PM="t" MC,若二面角M-BQ-C的平面角的大小為30°,試確定t的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
正△的邊長為4,
是
邊上的高,
分別是
和
邊的中點,現將△
沿
翻折成直二面角
.
(1)試判斷直線與平面
的位置關系,并說明理由;
(2)求平面BDC與平面DEF的夾角的余弦值;
(3)在線段上是否存在一點
,使
?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點,求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P,Q,R分別是棱AB,CC1,D1A1的中點.
(1)求證:B1D^平面PQR;
(2)設二面角B1-PR-Q的大小為q,求|cosq|.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)在四棱錐P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求證:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com