精英家教網 > 高中數學 > 題目詳情
對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數f(x)的不動點;已知f(x)=x2+bx+c.
(1)若f(x)有兩個不動點為-3,2,求函數y=f(x)的零點?
(2)已知當c=
94
時,函數f(x)沒有不動點,求實數b的取值范圍?
分析:(1)-3,2為x2+(b-1)x+c=0的兩根,解方程可求得b、c的值,從而可求得函數y=f(x)的零點;
(2)當c=
9
4
時,函數f(x)沒有不動點,就是方程x2+(b-1)x+
9
4
=0無實數根,由△<0即可求得實數b的取值范圍.
解答:解:(1)∵f(x)有兩個不動點為-3,2,
∴-3,2是方程x2+bx+c=x的兩根,
整理得:x2+(b-1)x+c=0,
∴-3+2=1-b,-3×2=c,
∴b=2,c=-6.
∴f(x)=x2+bx+c=x2+2x-6
由f(x)=0得其零點為x1,2=
-2±
4-4×1×(-6)
2
=-1±
7

(2)∵c=
9
4
時,函數f(x)沒有不動點,
∴x2+(b-1)x+
9
4
=0無實數根,
∴△=(b-1)2-9<0,解得-2<b<4.
∴實數b的取值范圍為:-2<b<4.
點評:本題主要考查的知識點是二次函數的性質,方程的解法,方程根的情況以及函數的零點.其中根據已知中的新定義,構造滿足條件的方程是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于函數f(x),若存在區間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區間M為函數f(x)的一個“穩定區間”.給出下列4個函數:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“穩定區間”的函數有
 
(填出所有滿足條件的函數序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若在其定義域內存在兩個實數a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數f(x)為“科比函數”.若函數f(x)=k+
x+2
是“科比函數”,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數
f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
(1)若x1<1<x2,且f(x)的圖象關于直線x=m對稱,求證:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩定點”.函數f(x)的“不動點”和“穩定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設函數f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設函數f(x)=3x+4,求集合A和B,并分析能否根據(1)(2)中的結論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數f(x)的不動點.若函數f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
1
2

(1)試求函數f(x)的單調區間,
(2)已知各項不為0的數列{an}滿足4Sn•f(
1
an
)=1,其中Sn表示數列{an}的前n項和,求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前題條件下,設bn=-
1
an
,Tn表示數列{bn}的前n項和,求證:T2011-1<ln2011<T2010

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视