【題目】為了減少霧霾,還城市一片藍天,某市政府于12月4日到12月31日在主城區實行車輛限號出行政策,鼓勵民眾不開車低碳出行,某甲乙兩個單位各有200名員工,為了了解員工低碳出行的情況,統計了12月5日到12月14日共10天的低碳出行的人數,畫出莖葉圖如下:
(1)若甲單位數據的平均數是122,求;
(2)現從如圖的數據中任取4天的數據(甲、乙兩單位中各取2天),記其中甲、乙兩單位員工低碳出行人數不低于130人的天數為,
,令
,求
的分布列和期望.
科目:高中數學 來源: 題型:
【題目】
近年來,隨著雙十一、雙十二等網絡活動的風靡,各大網商都想出了一系列的降價方案,以此來提高自己的產品利潤. 已知在2016年雙十一某網商的活動中,某店家采取了兩種優惠方案以供選擇:
方案一:購物滿400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:購物滿400元以上的,可以參加電子抽獎活動,即從1,2,3,4,5,6這6張卡牌中任取2張,將得到的數字相加,所得結果與享受優惠如下:
數字和 | [3,4] | [5,7] | [8,9] | [10,11] |
實際付款 | 原價 | 9折 | 8折 | 5折 |
(Ⅰ)若某顧客消費了800元,且選擇方案二,求該顧客只需支付640元的概率;
(Ⅱ)若某顧客購物金額為500元,她選擇了方案二后,得到的數字之和為6,此時她發現使用方案一、二最后支付的金額相同,求x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-aln x(a>0)的最小值是1.
(1)求a;
(2)若關于x的方程f2(x)ex-6mf(x)+9me-x=0在區間[1,+∞)有唯一的實根,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln x+ax-+b.
(1)若函數g(x)=f(x)+為減函數,求實數a的取值范圍;
(2)若f(x)≤0恒成立,證明:a≤1-b.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三一班、二班各有6名學生去參加學校組織的高中數學競賽選拔考試,成績如莖葉圖所示.
(1)若一班、二班6名學生的平均分相同,求值;
(2)若將競賽成績在、
、
內的學生在學校推優時,分別賦分、2分、3分,現在從一班的6名參賽學生中選兩名,求推優時,這兩名學生賦分的和為4分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)經過點(
,1),以原點為圓心、橢圓短半軸長為半徑的圓經過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-ax+2lnx,a∈R.
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線垂直于直線y=x,求函數f(x)的單調區間;
(Ⅱ)若x>1時,f(x)>0恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(導學號:05856287)
已知點A(0,1)與B(,
)都在橢圓C:
(a>b>0)上,直線AB交x軸于點M.
(Ⅰ)求橢圓C的方程,并求點M的坐標;
(Ⅱ)設O為原點,點D與點B關于x軸對稱,直線AD交x軸于點N.問:y軸上是否存在點E,使得∠OEM=∠ONE?若存在,求點E的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com