精英家教網 > 高中數學 > 題目詳情
已知向量
a
=(sin x,cos x),
b
=(
3
cos x,cos x),且
b
≠0,定義函數f(x)=2
a
b
-1

(1)求函數f(x)的單調增區間;
(2)若
a
b
,求tan x的值;
(3)若
a
b
,求x的最小正值.
分析:(1)把給出的向量的坐標代入數量積,然后化積得到函數f(x)的解析式,利用含有三角函數的復合函數的單調性求函數f(x)的單調增區間;
(2)利用向量共線的坐標表示得到關于x的三角函數式,直接求解可得tan x的值;
(3)利用向量垂直的坐標表示得到關于x的三角函數式,求出x的正切值后即可求得x的最小正值.
解答:解:(1)f(x)=2
a
b
-1

=2(
3
sin xcos x+cos2x)-1=
3
sin 2x+cos 2x=2sin(2x+
π
6
).
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z),
得kπ-
π
3
≤x≤kπ+
π
6
.∴單調增區間為[kπ-
π
3
,kπ+
π
6
]
,k∈Z.
(2)由
a
b
,得sin xcos x-
3
cos2x=0,
∵b≠0,∴cos x≠0.∴tan x-
3
=0,∴tan x=
3

(3)由
a
b
,得
3
sin xcos x+cos2x=0,
∵b≠0,∴cos x≠0,∴tan x=-
3
3

故x的最小正值為:x=
6
點評:本題考查向量的數量積判斷兩個向量的垂直關系,考查了向量共線的坐標表示,考查計算能力,是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)當θ∈[-
π
12
π
3
]時,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),滿足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,cosθ)與
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大。

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视