精英家教網 > 高中數學 > 題目詳情
對任意正整數n定義雙階乘n!!如下:當n為偶數時,n!!=n(n-2)(n-4)•…•4•2;
當n為奇數時,n!!=n(n-2)(n-4)•…•3•1,現有如下四個命題:
①(2011!!)(2010!!)=2011!;
②2010!!=2×1005!;
③設1010!!=a×10k(a,k∈N*),若a的個位數不是0,則k=112;
④設15!!=(ai為正質數,ni為正整數(i=1,2,…,m)),則(nimax=4;
則其中正確的命題是    (填上所有正確命題的序號).
【答案】分析:先利用題中的新定義判斷出①真②假,再根據雙階乘的定義,判斷出需要解決的問題,判斷出③假④真.
解答:解:由定義,①為真命題;,②為假命題;
由條件就是要求從個位數算起到第1個不是0的數字之間 的尾數中共有多少個連續的0,也即為 中各數的尾數所含0的個數的總和,共有 個,而 還能產生0(如 等)∴③是假命題;,∴④為真命題,
故答案為:①④.
點評:解決新定義的題目,一定要認真審題,理解透新定義的含義是關鍵,是近幾年?碱}型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對任意正整數n定義雙階乘n!!如下:當n為偶數時,n!!=n(n-2)(n-4)•…•4•2;
當n為奇數時,n!!=n(n-2)(n-4)•…•3•1,現有如下四個命題:
①(2011!!)(2010!!)=2011!;
②2010!!=2×1005!;
③設1010!!=a×10k(a,k∈N*),若a的個位數不是0,則k=112;
④設15!!=
a
n1
1
a
n2
2
a
nm
m
(ai為正質數,ni為正整數(i=1,2,…,m)),則(nimax=4;
則其中正確的命題是
 
(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

對任意正整數n,定義n的雙階乘n!如下:當n為偶數時,n!=n(n-2)(n-4)…6×4×2;當n為奇數時,n(n-2)(n-4)…5×3×1;
現有四個命題:①(2009!!)(2008!!)=2009!,②2008!!=2×1004!,③2008!!個位數為0,④2009!!個位數為5.其中正確的序號為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

對任意正整數n定義雙階乘n!!如下:當n為偶數時,n!!=n(n-2)(n-4)•…•4•2;
當n為奇數時,n!!=n(n-2)(n-4)•…•3•1,現有如下四個命題:
①(2011!!)(2010!!)=2011!;
②2010!!=2×1005!;
③設1010!!=a×10k(a,k∈N*),若a的個位數不是0,則k=112;
④設15!!=數學公式(ai為正質數,ni為正整數(i=1,2,…,m)),則(nimax=4;
則其中正確的命題是________(填上所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖北省黃岡市中學高二(上)期末數學試卷(理科)(解析版) 題型:填空題

對任意正整數n定義雙階乘n!!如下:當n為偶數時,n!!=n(n-2)(n-4)•…•4•2;
當n為奇數時,n!!=n(n-2)(n-4)•…•3•1,現有如下四個命題:
①(2011!!)(2010!!)=2011!;
②2010!!=2×1005!;
③設1010!!=a×10k(a,k∈N*),若a的個位數不是0,則k=112;
④設15!!=(ai為正質數,ni為正整數(i=1,2,…,m)),則(nimax=4;
則其中正確的命題是    (填上所有正確命題的序號).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视