精英家教網 > 高中數學 > 題目詳情

【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且btanB=
(1)求角B的值;
(2)若△ABC的面積為 ,a+c=8,求邊b.

【答案】
(1)解:∵△ABC的內角A,B,C的對邊分別為a,b,c,且btanB=

∴由正弦定理得:

sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,

∵B∈(0,π),∴sinB≠0,∴tanB= ,

∵B∈(0,π),∴B=


(2)解:∵△ABC的面積為 ,∴ = ,

,

∵a+c=8,

∴在△ABC中,由余弦定理得:

b2=a2+c2﹣2accosB=(a+c)2﹣3ac=36,

∴b=6


【解析】(1)由正弦定理得:sinBtanB= (sinAcosC+sinCcosA)= sin(A+C)= sinB,求出tanB= ,由此求出B= .(2)由△ABC的面積為 ,得到 ,再由a+c=8,利用余弦定理能求出b的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為 ,則 的取值范圍為(
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設a、b表示兩條直線,α、β表示兩個平面,則下列命題正確的是 . (填寫所有正確命題的序號) ①若a∥b,a∥α,則b∥α; ②若a∥b,aα,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某餐館一天中要購買A,B兩種蔬菜每斤的價格分別為2元和3元,根據需要,A種蔬菜至少要買6斤,B種蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.

(1)寫出一天中A種蔬菜購買的數量x和B種蔬菜購買的數量y之間的不等式組;
(2)在下面給定的坐標系中畫出(1)中不等式組表示的平面區域(用陰影表示),并求出它的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】不等式(x+5)(3﹣2x)≤6的解集是(
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位擬建一個扇環形狀的花壇(如圖所示),按設計要求扇環的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關于x的函數關系式;
(2)已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用之比為y,求y關于x的函數關系式,并求出y的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】算法流程圖如圖所示,則輸出的結果是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點.
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足下列條件的有兩個的是(
A.
B.
C.a=1,b=2,c=3
D.a=3,b=2,A=60°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视