【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為平行四邊形,AB=3,AC=4,AD=5,SA⊥平面ABCD.
(1)證明:AC⊥平面SAB;
(2)若SA=2,求三棱錐A﹣SCD的體積.
【答案】
(1)證明:∵四棱錐S﹣ABCD中,底面ABCD為平行四邊形,
AB=3,AC=4,AD=5,
∴BC2=AB2+AC2,AC⊥AB,
∵SA⊥平面ABCD,∴SA⊥AC,
∵AB∩SA=A,∴AC⊥平面SAB
(2)解: VA﹣SCD=VS﹣ACD= ,
∵SA⊥平面ABCD,
∴SA是三棱錐S﹣ACD的高,
S△ACD= =
=6,
∴VA﹣SCD=VS﹣ACD
= =
.
【解析】(1)推導出AC⊥AB,SA⊥AC,由此能證明AC⊥平面SAB.(2)由VA﹣SCD=VS﹣ACD , 能求出三棱錐A﹣SCD的體積.
【考點精析】利用直線與平面垂直的判定對題目進行判斷即可得到答案,需要熟知一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sinxcosx+sin2x﹣
.
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設函數g(x)=f( +
),其中常數ω>0,|φ|<
. (i)當ω=4,φ=
時,函數y=g(x)﹣4λf(x)在[
,
]上的最大值為
,求λ的值;
(ii)若函數g(x)的一個單調減區間內有一個零點﹣ ,且其圖象過點A(
,1),記函數g(x)的最小正周期為T,試求T取最大值時函數g(x)的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f( )|對一切x∈R恒成立,則以下結論正確的是(寫出所有正確結論的編號). ①
;②
≥
;
③f(x)的單調遞增區間是(kπ+ ,kπ+
)(k∈Z);
④f(x)既不是奇函數也不是偶函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某中學高三年級甲乙兩班各10名同學,測量出他們的身高(單位:cm),獲得身高數據的莖葉圖如圖.其中甲班有一個數據被污損.
(Ⅰ)若已知甲班同學身高平均數為170cm,求污損處的數據;
(Ⅱ)現從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣ (a,b∈N*),f(1)=
且f(2)<2.
(Ⅰ)求a,b的值;
(Ⅱ)判斷并證明函數y=f(x)在區間(﹣1,+∞)上的單調性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2﹣3x+1, ,(A≠0)
(1)當0≤x≤ 時,求y=f(sinx)的最大值;
(2)若對任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實數A的取值范圍;
(3)問a取何值時,方程f(sinx)=a﹣sinx在[0,2π)上有兩解?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=sin(2x﹣ )的圖象,只需把正弦曲線y=sinx上所有點( )
A.向右平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的
倍,縱坐標不變
B.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的
倍,縱坐標不變
C.向右平移 個單位長度,再將所得圖象上的點橫坐標伸長為原來的2倍,縱坐標不變
D.向左平移 個單位長度,再將所得圖象上的點橫坐標縮短為原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差不為零的等差數列,a1=1,且a2 , a4 , a8成等比數列.
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足:a1b1+a2b2+a3b3+…+anbn=2n+1 , n∈N* , 令cn= ,n∈N* , 求數列{cncn+1}的前n項和Sn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com