科目:高中數學 來源: 題型:解答題
已知平面上的線段l及點P,在l上任取一點Q,線段PQ長度的最小值稱為點P到線段l的距離,記作。
(1)已知點,線段
,求
;
(2)設A(-1,0),B(1,0),求點集所表示圖形的面積;
(3)若M(0,1),O(0,0),N(2,0),畫出集合所表示的圖形。(本題滿分14分)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(16分)已知函數是定義在
上的奇函數,且當
時,
.
(1)當時,求函數
的解析式;
(2)若函數為單調遞減函數;
①直接寫出的范圍(不必證明);
②若對任意實數,
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
已知函數
(Ⅰ)判斷f(x)在上的單調性,并證明你的結論;
(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 試判斷A與B的關系;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司為了實現1000萬元利潤的目標,準備制定一個激勵銷售人員的獎勵方案:在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎金(單位:萬元)隨銷售利潤
(單位:萬元)的增加而增加,但獎金總數不超過5萬元,同時獎金不能超過利潤的
%.現有三個獎勵模型:
,分析與推導哪個函數模型能符合該公司的要求?并給予證明.(注:
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com