【題目】如圖,已知拋物線x2=y,點A(﹣ ,
),B(
,
),拋物線上的點P(x,y)(﹣
<x<
),過點B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA||PQ|的最大值.
【答案】解:(Ⅰ)由題可知P(x,x2),﹣ <x<
,
所以kAP= =x﹣
∈(﹣1,1),
故直線AP斜率的取值范圍是:(﹣1,1);
(Ⅱ)由(I)知P(x,x2),﹣ <x<
,
所以 =(﹣
﹣x,
﹣x2),
設直線AP的斜率為k,則AP:y=kx+ k+
,BP:y=﹣
x+
+
,
聯立直線AP、BP方程可知Q( ,
),
故 =(
,
),
又因為 =(﹣1﹣k,﹣k2﹣k),
故﹣|PA||PQ|=
=
+
=(1+k)3(k﹣1),
所以|PA||PQ|=(1+k)3(1﹣k),
令f(x)=(1+x)3(1﹣x),﹣1<x<1,
則f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),
由于當﹣1<x<﹣ 時f′(x)>0,當
<x<1時f′(x)<0,
故f(x)max=f( )=
,即|PA||PQ|的最大值為
.
【解析】(Ⅰ)通過點P在拋物線上可設P(x,x2),利用斜率公式結合﹣ <x<
可得結論;
(Ⅱ)通過(I)知P(x,x2)、﹣ <x<
,設直線AP的斜率為k,聯立直線AP、BP方程可知Q點坐標,進而可用k表示出
、
,計算可知|PA||PQ|=(1+k)3(1﹣k),通過令f(x)=(1+x)3(1﹣x),﹣1<x<1,求導結合單調性可得結論.
【考點精析】本題主要考查了函數的最大(小)值與導數和斜率的計算公式的相關知識點,需要掌握求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值;給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點,AC=BC=BB1.
求證:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知隨機變量ξi滿足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2< ,則( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的零件數,點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數,i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數,則Q1 , Q2 , Q3中最大的是 .
②記pi為第i名工人在這一天中平均每小時加工的零件數,則p1 , p2 , p3中最大的是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義在R上且周期為1的函數,在區間[0,1)上,f(x)= ,其中集合D={x|x=
,n∈N*},則方程f(x)﹣lgx=0的解的個數是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的離心率為
,兩個頂點分別為
,
.過點
的直線交橢圓于
,
兩點,直線
與
的交點為
.
(1)求橢圓的標準方程;
(2)求證:點在一條定直線上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com