精英家教網 > 高中數學 > 題目詳情

【題目】已知圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,則b等于(
A.±
B.±
C.±2
D.±

【答案】B
【解析】解:圓C:(x﹣1)2+(y﹣3)2=2的圓心C(1,3),半徑r= ,

聯立 ,得 ,

∴圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB的長為2,

∵圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,

∴圓C:(x﹣1)2+(y﹣3)2=2被直線y=3x+b所截得的線段CD的長度為2,

∵圓心C(1,3)到直線y=3x+b的距離d= =

∴由勾股定理得: ,

即2= ,解得b=

故選:B.

【考點精析】掌握直線與圓的三種位置關系是解答本題的根本,需要知道直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=eax(a≠0).
(1)當 時,令 (x>0),求函數g(x)在[m,m+1](m>0)上的最小值;
(2)若對于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a和b是任意非零實數.
(1)求 的最小值.
(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面A1B1C1 , AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點,F是BB1上的點,AB1 , DF交于點E,且AB1⊥DF,則下列結論中不正確的是(
A.CE與BC1異面且垂直
B.AB1⊥C1F
C.△C1DF是直角三角形
D.DF的長為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校有甲、乙兩個實驗班,為了了解班級成績,采用分層抽樣的方法從甲、乙兩個班學生中分別抽取8名和6名測試他們的數學成績與英語成績(單位:分),用表示(m,n).下面是乙班6名學生的測試分數:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),當學生的數學、英語成績滿足m≥135,且n≥130時,該學生定為優秀學生.
(1)已知甲班共有80名學生,用上述樣本數據估計乙班優秀生的數量;
(2)從乙班抽出的上述6名學生中隨機抽取3名,求至少有兩名優秀生的概率;
(3)從乙班抽出的上述6名學生中隨機抽取2名,其中優秀生數記為ξ,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數f(x)= sin(2x+φ)(|φ|< )的圖象關于直線x= 對稱,且當x1 , x2∈(﹣ ,﹣ ),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足: + +…+ = (n∈N*).
(1)求數列{an}的通項公式;
(2)若bn=anan+1 , Sn為數列{bn}的前n項和,對于任意的正整數n,Sn>2λ﹣ 恒成立,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設點(a,b)是區域 內的任意一點,則使函數f(x)=ax2﹣2bx+3在區間[ ,+∞)上是增函數的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過點( ).
(1)求函數f(x)在[0, ]的最小值;
(2)設角C為銳角,△ABC的內角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2 ,a+b=6,求邊c的長.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视