精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標準方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

【答案】12

【解析】

(1)先利用中點公式可得,再根據拋物線的定義可得,進而求解;

2,為點到直線的距離,可設直線:),則的中垂線方程為:,可得到點的坐標,將直線的方程與拋物線聯立,利用弦長公式求得弦長,再利用點到直線距離公式求得,則可得到的面積為關于的函數,進而利用導函數求得最大值即可.

解:(1)由題意知,

,

,

拋物線的標準方程為

2)設直線:),

,得,

,,

,

,

的中垂線方程為:,即,

可得點C的坐標為,

直線:,,

C到直線的距離,

,則),

,

,令,則,

;在,

單調遞增,單調遞減,

,時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,,側面為等邊三角形且垂直于底面,的中點.

(1)在棱上取一點使直線∥平面并證明;

(2)在(1)的條件下,當棱上存在一點,使得直線與底面所成角為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,二面角為直二面角,為線段的中點,,.

1)求證:平面平面;

2)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,平面五邊形中,,,是邊長為2的正三角形.現將沿折起,得到四棱錐(如圖2),且.

1)求證:平面平面;

2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關數據,為分析其關系,該店做了五次統計,所得數據如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關于的線性回歸方程是,給出下列說法:

;

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關;

③當日平均氣溫為攝氏度時,日銷售額一定為百元.

其中正確說法的序號是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設拋物線C1:的準線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點QMC1上一動點,且在PQ之間移動.

1)當取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續的自然數,當MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,且橢圓過點

1)求橢圓的標準方程;

2)設直線交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環形分布,并且公司給四個派送點準備某種商品各50.根據平臺數據中心統計發現,需要將發送給四個派送點的商品數調整為40,45,54,61,但調整只能在相鄰派送點進行,每次調動可以調整1件商品.為完成調整,則(

A.最少需要16次調動,有2種可行方案

B.最少需要15次調動,有1種可行方案

C.最少需要16次調動,有1種可行方案

D.最少需要15次調動,有2種可行方案

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某縣精準扶貧攻堅力公室決定派遣8名干部(53女)分成兩個小組,到該縣甲、乙兩個貧困村去參加扶貧工作,若要求每組至少3人,且每組均有男干部參加,則不同的派遣方案共有______種.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视