【題目】如圖,在平面直角坐標系xOy中,已知為橢圓
的上頂點,P為橢圓E上異于上、下頂點的一個動點.當點P的橫坐標為
時,
.
(1)求橢圓E的標準方程;
(2)設M為x軸的正半軸上的一個動點.
①若點P在第一象限內,且以AP為直徑的圓恰好與x軸相切于點M,求AP的長.
②若,是否存在點N,滿足
,且AN的中點恰好在橢圓E上?若存在,求點N的坐標;若不存在,請說明理由.
【答案】(1);(2)①
;②存在點
滿足題意.
【解析】
(1)根據題意可知,可求出P點坐標,代入方程求出
即可;
(2)①設,則可表示出圓心坐標可設為
,
,根據圓的性質
及點P在橢圓上列出方程組求解即可;
②設,
,根據
, AN的中點恰好在橢圓E上,且
得到
點坐標,即可求解.
(1)因為是橢圓E的上頂點,所以
.
當點P的橫坐標為時,
.
設,則
,解得
,
所以橢圓E的標準方程為.
(2)①設,則以AP為直徑的圓的圓心坐標可設為
.
又因為,所以
.
因為,所以
,
得.
因為點P在橢圓E上,所以,
與聯立解得
(負值舍去),
所以.
②設,
.
因為,
所以,
解得,
所以AN的中點坐標為
因為AN的中點在橢圓E上,
所以.(*)
因為,所以
.
因為點P在橢圓E上,
所以,(**)
與聯立消去
得
.
又因為,所以
,
代入(*)式和(**)式得
消去m得.
又因為.所以
,
代入(**)式和,
解得(負值舍去),
故.
綜上,存在點,滿足
且AN的中點恰好在橢圓E上.
科目:高中數學 來源: 題型:
【題目】如圖,點為正方形
邊
上異于點
,
的動點,將
沿
翻折成
,在翻折過程中,下列說法正確的是( )
A.存在點和某一翻折位置,使得
B.存在點和某一翻折位置,使得
平面
C.存在點和某一翻折位置,使得直線
與平面
所成的角為45°
D.存在點和某一翻折位置,使得二面角
的大小為60°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過拋物線的焦點
且與
軸垂直的直線與拋物線在第一象限交于點
,
的面積為
,其中
為坐標原點.
(1)求拋物線的標準方程;
(2)若,
,
為拋物線上的兩個不同的點,直線
,
的斜率分別為
,
,且
,求點
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某蔬菜批發商經銷某種新鮮蔬菜(以下簡稱A蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內所購進的A蔬菜沒有售完,則批發商將沒售完的A蔬菜以150元/袋的價格低價處理完畢(根據經驗,2小時內完全能夠把A蔬菜低價處理完,且當天不再購進).該蔬菜批發商根據往年的銷量,統計了100天A蔬菜在每天的前8小時內的銷售量,制成如下頻數分布條形圖.
(1)若某天該蔬菜批發商共購入6袋A蔬菜,有4袋A蔬菜在前8小時內分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?
(2)若今年A蔬菜上市的100天內,該蔬菜批發商每天都購進A蔬菜5袋或者每天都購進A蔬菜6袋,估計這100天的平均利潤,以此作為決策依據,該蔬菜批發商應選擇哪一種A蔬菜的進貨方案?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同種新能源產品(這兩個公司每天都固定生產50件產品),所生產的產品均在本地銷售.產品進人市場之前需要對產品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進人市場.檢測員統計了甲、乙兩個下屬公司100天的生產情況及每件產品盈利虧損情況,數據如表所示:
表1
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數 | 10 | 10 | 40 | 40 | 50 | |
天數 | 10 | 10 | 10 | 10 | 80 |
表2
甲公司 | 得分 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
件數 | 10 | 5 | 40 | 45 | 50 | |
天數 | 20 | 10 | 20 | 10 | 70 |
表3
每件正品 | 每件次品 | |
甲公司 | 盈2萬元 | 虧3萬元 |
乙公司 | 盈3萬元 | 虧3.5萬元 |
(1)分別求甲、乙兩個公司這100天生產的產品的正品率(用百分數表示).
(2)試問甲、乙兩個公司這100天生產的產品的總利潤哪個更大?說明理由.
(3)若以甲公司這100天中每天產品利潤總和對應的頻率作為概率,從甲公司這100天隨機抽取1天,記這天產品利潤總和為X,求X的分布列及其數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人投籃的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲與乙的命中率之和.若甲與乙各投籃一次,每人投籃相互獨立,則他們都命中的概率為0.18.
(1)求甲、乙、丙三人投籃的命中率;
(2)現要求甲、乙、丙三人各投籃一次,假設每人投籃相互獨立,記三人命中總次數為,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com