【題目】某地某路無人駕駛公交車發車時間間隔(單位:分鐘)滿足
,
.經測算,該路無人駕駛公交車載客量
與發車時間間隔
滿足:
,其中
.
(1)求,并說明
的實際意義;
(2)若該路公交車每分鐘的凈收益(元),問當發車時間間隔為多少時,該路公交車每分鐘的凈收益最大?并求每分鐘的最大凈收益.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,在底面ABCD中,AD//BC,AD⊥CD,Q是AD的中點,M是棱PC的中點,PA=PD=2,BC=AD=1,CD=
,PB=
.
(Ⅰ)求證:平面PAD⊥底面ABCD;
(Ⅱ)試求三棱錐B-PQM的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租車時間不超過兩小時免費,超過兩小時的部分每小時收費標準為2元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立來該租車點租車騎游(各租一車一次),設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為
;兩人租車時間都不會超過四小時.
(1)求出甲、乙兩人所付租車費用相同的概率;
(2)求甲、乙兩人所付的租車費用之和為4元時的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某糕點房推出一類新品蛋糕,該蛋糕的成本價為4元,售價為8元.受保質期的影響,當天沒有銷售完的部分只能銷毀.經過長期的調研,統計了一下該新品的日需求量.現將近期一個月(30天)的需求量展示如下:
日需求量x(個) | 20 | 30 | 40 | 50 |
天數 | 5 | 10 | 10 | 5 |
(1)從這30天中任取兩天,求兩天的日需求量均為40個的概率.
(2)以上表中的頻率作為概率,列出日需求量的分布列,并求該月的日需求量
的期望.
(3)根據(2)中的分布列求得當該糕點房一天制作35個該類蛋糕時,對應的利潤的期望值為;現有員工建議擴大生產一天45個,求利用利潤的期望值判斷此建議該不該被采納.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,長度為3的線段的端點
、
分別在
,
軸上滑動,點
在線段
上,且
,
(1)若點的軌跡為曲線
,求其方程;
(2)過點的直線
與曲線
交于不同兩點
、
,
是曲線上不同于
、
的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點是圓心為
半徑為
的半圓弧上從點
數起的第一個三等分點,點
是圓心為
半徑為
的半圓弧的中點,
、
分別是兩個半圓的直徑,
,直線
與兩個半圓所在的平面均垂直,直線
、
共面.
(1)求三棱錐的體積;
(2)求直線與
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()
(結果精確到0.1.參考數據:lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com