【題目】已知集合且
,設
.
若
2,3,4,5,
和
2,3,4,5,
,分別求S的值;
若集合A中所有元素之和為55,求S的最小值;
若集合A中所有元素之和為103,求S的最小值.
【答案】(1);(2)
;(3)
.
【解析】
由
的公式,計算可得所求和;
集合A中的元素為正整數,且S的公式,可得A中元素為
,計算可得所求最小值;
集合A中的元素為正整數,且
的公式,可得A中元素為
,計算可得所求最小值.
解:2,3,4,5,
,
可得;
2,3,4,5,
,
可得;
集合A中所有元素之和為55,
由,
,
要使S取得最小值,不妨設,
可使較小的前5個數,盡可能差距最小,即相鄰,
可得1,2,3,4,5,最大數為40,
則,
可得S的最小值為280;
若集合A中所有元素之和為103,
由,
,
要使S取得最小值,不妨設,
可使較小的前5個數,盡可能差距最小,即相鄰,
可得1,2,3,4,5,最大數為88,
則.
可得S的最小值為568.
科目:高中數學 來源: 題型:
【題目】如果函數在其定義域內存在
,使得
成立,則稱函數
為“可分拆函數”.
(1)試判斷函數是否為“可分拆函數”?并說明你的理由;
(2)設函數為“可分拆函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現甲乙兩人從該汽車經銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為6,離心率為 ,F2為橢圓的右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)點M在圓x2+y2=8上,且M在第一象限,過M作圓x2+y2=8的切線交橢圓于P,Q兩點,判斷△PF2Q的周長是否為定值并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,g(x)=lnx,其中e為自然對數的底數.
(1)求函數y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數,求證:λ>e;
(3)若對任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com