【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.
【答案】
(1)解:∵不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2},
∴方程ax2+bx﹣1=0的兩個根為﹣1和2,
將兩個根代入方程中得 ,
解得:a= ,b=﹣
(2)解:由(1)得不等式為x2﹣ x﹣
>0,
即2x2﹣x﹣1>0,
∵△=(﹣1)2﹣4×2×(﹣1)=9>0,
∴方程2x2﹣x﹣1=0的兩個實數根為:x1=﹣ ,x2=1;
因而不等式x2﹣ x﹣
>0的解集是{x|x<﹣
或x>1}
【解析】(1)根據不等式ax2+bx﹣1<0的解集,不等式與方程的關系求出a、b的值;(2)由(1)中a、b的值解對應不等式即可.
【考點精析】本題主要考查了解一元二次不等式的相關知識點,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規律:當二次項系數為正時,小于取中間,大于取兩邊才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知圓,定點
為圓上一動點,線段
的垂直平分線交線段
于點
,設點
的軌跡為曲線
;
(Ⅰ)求曲線的方程;
(Ⅱ)若經過的直線
交曲線于不同的兩點
,(點
在點
,
之間),且滿足
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數 F ( x)=f(x)g(x)的極值
(Ⅱ)若函數 G( x)=f(x)﹣g(x)+(a﹣1)在區間 ( ,e) 內有兩個零點,求的取值范圍;
(Ⅲ)函數 h( x)=g ( x )﹣x+ ,設 x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當 a≤e+1
時,M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某連鎖經營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當銷售額為4(千萬元)時,估計利潤額的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體ABCD﹣A1B1C1D1中,E是CD上一點,AB=AD=3,AA1=2,CE=1,P是AA1上一點,且DP∥平面AEB1 , F是棱DD1與平面BEP的交點,則DF的長為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據國家環保部新修訂的《環境空氣質量標準》規定:居民區PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環保局隨機抽取了一居民區2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監測數據,數據統計如表
組別 | PM2.5濃度 | 頻數(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的天數中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(2)將這20天的測量結果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區的環境質量是否需要改善?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業投資1千萬元用于一個高科技項目,每年可獲利25%.由于企業間競爭激烈,每年底需要從利潤中取出資金200萬元進行科研、技術改造與廣告投入,方能保持原有的利潤增長率.經過多少年后,該項目的資金可以達到4倍的目標?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年空氣質量逐步惡化,霧霾天氣現象出現增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫院隨機的對入院50人進行了問卷調查得到了如下的列聯表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關,請計算出統計量K2 , 你有多大的把握認為心肺疾病與性別有關?
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 ,其中n=a+b+c+d)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com