【題目】在極坐標系中,已知圓C的圓心,半徑r=3.
(1)求圓C的極坐標方程;
(2)若Q點在圓C上運動,P在OQ的延長線上,且,求動點P的軌跡的極坐標方程.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),曲線
的直角坐標方程為
.
(1)求與
的極坐標方程;
(2)在以為極點,
軸的正半軸為極軸的極坐標系中,射線
與
的異于極點的交點為
,與
的異于極點的交點為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.
(1)求拋物線C的標準方程
(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學將收集到的六組數據制作成散點圖如圖所示,并得到其回歸直線的方程為,計算其相關系數為
,相關指數為
.經過分析確定點F為“離群點”,把它去掉后,再利用剩下的5組數據計算得到回歸直線的方程為
,相關系數為
,相關指數為
.以下結論中,不正確的是( )
A.>
B.
>0,
>0C.
=0.12D.0<
<0.68
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據統計,某蔬菜基地西紅柿畝產量的增加量(百千克)與某種液體肥料每畝使用量
(千克)之間的對應數據的散點圖,如圖所示.
(1)依據數據的散點圖可以看出,可用線性回歸模型擬合與
的關系,請計算相關系數
并加以說明(若
,則線性相關程度很高,可用線性回歸模型擬合);
(2)求關于
的回歸方程,并預測液體肥料每畝使用量為
千克時,西紅柿畝產量的增加量約為多少?
附:相關系數公式,回歸方程
中斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,上頂點為
,離心率為
,且
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)已知為坐標原點,過點
的直線
與橢圓
交于
,
兩點,點
在橢圓
上,若
,試判斷
是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在矩形中,
,
,點
在線段
上,且
,現將
沿
折到
的位置,連結
,
,如圖2.
(1)若點在線段
上,且
,證明:
;
(2)記平面與平面
的交線為
.若二面角
為
,求
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com