精英家教網 > 高中數學 > 題目詳情
設函數f(x)=.

(1)試根據函數y=的圖象作出f(x)的圖象,并寫出變換過程;

(2)f(x)的圖象是中心對稱圖形嗎?

解:(1)令y=,化簡得y=1+,即y-1=.

    又令得y′=.

    由平移公式知,由f(x)=的圖象按向量a=(-2,-1)平移,可得到y=的圖象.

    反之,由y=的圖象按向量b=-a=(2,1)平移,可得到f(x)=的圖象,

    即將y=的圖象先向右平移2個單位,再向上平移1個單位,便得到f(x)=的圖象,如圖.

    (2)由圖知,f(x)的圖象是中心對稱圖形,其對稱中心為(2,1).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=3sin(-2x+
π
4
)
的圖象為C,有下列四個命題:
①圖象C關于直線x=-
8
對稱:
②圖象C的一個對稱中心是(
8
,0)

③函數f(x)在區間[
π
8
,
8
]
上是增函數;
④圖象C可由y=-3sin2x的圖象左平移
π
8
得到.其中真命題的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
1
2
x2-tx+3lnx,g(x)=
2x+t
x2-3
,已知a,b為函數f(x)的極值點(0<a<b).
(1)求函數g(x)在區間(-∞,-a)上單調區間,并說明理由;
(2)若曲線g(x)在x=1處的切線斜率為-4,且方程g(x)-m=0有兩上不等的負實根,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=lnx-
1
2
ax2-bx

(1)當a=b=
1
2
時,求f(x)的最大值;
(2)當a=0,b=-1時,方程2mf(x)=x2有唯一實數解,求正數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=lnx-
12
ax2-bx

(I)若x=1是f(x)的極大值點,求a的取值范圍;
(II)當a=0,b=-1時,方程2mf(x)=x2中唯一實數解,求正數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2x2x+1
,g(x)=(a+2)x+5-3a.
(1)求函數f(x)在區間[0,1]上的值域;
(2)若對于任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數a的取值范圍..

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视