【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點E,F分別在A1B1 , D1C1上,A1E=D1F=4,過點E,F的平面α與此長方體的面相交,交線圍成一個正方形.
(I)在圖中畫出這個正方形(不必說明畫法和理由);
(II)求直線AF與平面α所成角的正弦值.
【答案】解:(I)交線圍成的正方形EFGH如圖:(II)作EM⊥AB,垂足為M,則:
EH=EF=BC=10,EM=AA1=8;
∴ ,∴AH=10;
以邊DA,DC,DD1所在直線為x,y,z軸,建立如圖所示空間直角坐標系,
則:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);
∴ ;
設 為平面EFGH的法向量,則:
,取z=3,則
;
若設直線AF和平面EFGH所成的角為θ,則:
sinθ= =
;
∴直線AF與平面α所成角的正弦值為
【解析】(I)容易知道所圍成正方形的邊長為10,再結合長方體各邊的長度,即可找出正方形的位置,從而畫出這個正方形;(II)分別以直線DA,DC,DD1為x,y,z軸,建立空間直角坐標系,考慮用空間向量解決本問,能夠確定A,H,E,F幾點的坐標.設平面EFGH的法向量為 ,根據
即可求出法向量
,
坐標可以求出,可設直線AF與平面EFGH所成角為θ,由sinθ=
即可求得直線AF與平面α所成角的正弦值.
【考點精析】解答此題的關鍵在于理解空間角的異面直線所成的角的相關知識,掌握已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
.
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)已知數列(
,
)滿足
,
其中
,
.
(1)當時,求
關于
的表達式,并求
的取值范圍;
(2)設集合.
①若,
,求證:
;
②是否存在實數,
,使
,
,
都屬于
?若存在,請求出實數
,
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E分別是BC,AB的中點,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P﹣BC﹣A的平面角為γ,則α,β,γ的大小關系是( )
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知: 、
、
是同一平面內的三個向量,其中
=(1,2)
(1)若| |=2
,且
∥
,求
的坐標;
(2)若| |=
,且
+2
與2
﹣
垂直,求
與
的夾角θ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x0 , x0+ 是函數f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求 的值;
(2)若對 ,都有|f(x)﹣m|≤1,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點.
(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C是橢圓M:上的三點,其中點A是橢圓的右頂點,BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市教育部門擬從18名高中數學教師中選拔2人參加省教師技能大賽.為縮短比賽時間,將這18名教師隨機分成,
兩組,其選拔賽成績的莖葉圖如圖所示.該教育部門先將成績不低于85分的教師初選出來進行培訓后,再從中選拔2人參加省教師技能大賽.
(Ⅰ)若僅從初選選手中隨機抽選2人參加省賽,并記抽選的2人中來自組的人數為
,試求
的分布列和期望值;
(Ⅱ)在(Ⅰ)的條件下,若參加省賽的2人是同性的概率等于,求初選出來參加培訓的男教師和女教師的人數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com