【題目】近年來我國電子商務行業迎來發展的新機遇,2017年雙11全天交易額達到1682億元,為規范和評估該行業的情況,相關管理部門制定出針對電商的商品和服務的評價體系.現從評價系統中選出200次成功交易,并對其評價進行評價,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)完成關于商品和服務評價的列聯表,判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全為好評的次數為隨機變量:
①求對商品和服務全為好評的次數的分布列;
②求的數學期望和方差.
附:臨界值表:
的觀測值:
(其中
)
關于商品和服務評價的列聯表:
【答案】(1)答案見解析;(2)①.答案見解析;②.答案見解析.
【解析】試題分析:(1)由題設中所給數據可列出關于商品和服務評價的列聯表,將列聯表中數據代入公式
,求得
的值,與鄰界值比較,即可得到結論;(2)①每次購物時,對商品和服務全好評的概率為
,且
的取值可以是
.根據獨立重復試驗概率公式求出相應的概率,可得對商品和服務全好評的次數
的分布列;②利用二項分布的數學期望和方差公式求
的數學期望和方差.
試題解析:(1)由題意可得關于商品和服務評價的列聯表如下:
,
故能在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關.
(2)①每次購物時,對商品和服務全為好評的概率為,且
的取值可以是0,1,2,3.
其中;
;
.
的分布列為:
②,
,
科目:高中數學 來源: 題型:
【題目】2017年,世界乒乓球錦標賽在德國的杜賽爾多夫舉行.整個比賽精彩紛呈,參賽選手展現出很高的競技水平,為觀眾奉獻了多場精彩對決.圖1(扇形圖)和表1是其中一場關鍵比賽的部分數據統計.兩位選手在此次比賽中擊球所使用的各項技術的比例統計如圖1.在乒乓球比賽中,接發球技術是指回接對方發球時使用的各種方法.選手乙在比賽中的接發球技術統計如表1,其中的前4項技術統稱反手技術,后3項技術統稱為正手技術.
圖1
選手乙的接發球技術統計表
技術 | 反手擰球 | 反手搓球 | 反手拉球 | 反手撥球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次數 | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)觀察圖1,在兩位選手共同使用的8項技術中,差異最為顯著的是哪兩項技術?
(Ⅱ)乒乓球接發球技術中的拉球技術包括正手拉球和反手拉球.從表1統計的選手乙的所有拉球中任取兩次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果僅從表1中選手乙接發球得分率的穩定性來看(不考慮使用次數),你認為選手乙的反手技術更穩定還是正手技術更穩定?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤(單位:元)關于當天需求量
(單位:枝,
)的函數解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(1)若花店一天購進17枝玫瑰花, 表示當天的利潤(單位:元),求
的分布列及數學期望;
(2)若花店計劃一天購進16枝或17枝玫瑰花,以利潤角度看,你認為應購進16枝好還是17枝好?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形
為矩形,四邊形
為梯形,
,平面
與平面
垂直,且
.
(1)求證: 平面
;
(2)若,且平面
與平面
所成銳二面角的余弦值為
,求
的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com