精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線

(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數方程:

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

【答案】(1),為參數)(2)點,最大值為

【解析】

試題分析:(1)根據將直線極坐標方程化為直角坐標方程,根據圖像伸縮變換得曲線的直角坐標方程,再根據橢圓參數方程得曲線的參數方程為參數)(2)根據點到直線距離公式得點到直線的距離為

利用配角公式得,再根據正弦函數性質得最值及對應自變量的取值

試題解析:(1)由題意知,直線的直角坐標方程為:,...................2分

曲線的直角坐標方程為:,

曲線的參數方程為:為參數).....................5分

(2)設點的坐標,則點到直線的距離為:

,............................7分

時,點,此時...............10分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知動圓與圓都相內切,即圓心的軌跡為曲線;設為曲線上的一個不在軸上的動點,為坐標原點過點的平行線交曲線,兩個不同的點

(1)求曲線的方程;

(2)試探究的比值能否為一個常數?若能,求出這個常數;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求的最小正周期和單調遞增區間;

(Ⅱ)說明函數的圖像可由正弦曲線經過怎樣的變化得到;

(Ⅲ)若是第二象限的角,求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求曲線在點處的切線方程和函數的極值:

(2)若對任意,都有成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某景區客棧的工作人員為了控制經營成本,減少浪費,合理安排入住游客的用餐,他們通過統計每個月入住的游客人數,發現每年各個月份來客棧入住的游客人數會發生周期性的變化,并且有以下規律:

①每年相同的月份,入住客棧的游客人數基本相同;

②入住客棧的游客人數在2月份最少,在8月份最多,相差約400人;

③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達到最多.

(1)若入住客棧的游客人數與月份之間的關系可用函數, , )近似描述,求該函數解析式;

(2)請問哪幾個月份要準備不少于400人的用餐?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1) 時,求函數的單調區間

討論函數在定義域內的極值點的個數;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國內某汽車品牌一個月內被消費者投訴的次數用表示,據統計,隨機變量的概率分布如下:

(1)求的值;

(2)假設一月與二月被消費者投訴的次數互不影響,求該汽車品牌在這兩個月內被消費者投訴次的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 , 的解集為

(Ⅰ)求的值;

(Ⅱ)若成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的直三棱柱中,,分別是的中點.

)求證:平面;

)若為正三角形,,上的一點,求直線與直線所成角的正切值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视