(1)已知,其中
,求
的最小值,及此時
與
的值.
(2)關于的不等式
,討論
的解.
科目:高中數學 來源: 題型:解答題
某小區想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中
,
,且
中,
,經測量得到
.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經過點
作一直線交
于
,從而得到五邊形
的市民健身廣場,設
.
(1)將五邊形的面積
表示為
的函數;
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如下圖所示,橢圓的左頂點為
,
是橢圓
上異于點
的任意一點,點
與點
關于點
對稱.
(1)若點的坐標為
,求
的值;
(2)若橢圓上存在點
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示:用籬笆圍成一個一邊靠墻的矩形菜園 ,假設墻有足夠長.
(Ⅰ) 若籬笆的總長為,則這個矩形的長,寬各為多少時,菜園的面積最大?
(Ⅱ) 若菜園的面積為,則這個矩形的長,寬各為多少時,籬笆的總長最短?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com