【題目】已知橢圓的離心率為
,若橢圓上的點與兩個焦點構成的三角形中,面積最大為1.
(1)求橢圓的標準方程;
(2)設直線與橢圓的交于
兩點,
為坐標原點,且
,證明:直線
與圓
相切.
【答案】(1)(2)證明見解析
【解析】
(1)由橢圓上點為短軸端點時所給三角形面積最大可得,結合離心率和橢圓
的關系,構造方程組求得
,進而得到橢圓方程;
(2)①當的斜率存在時,設
方程與橢圓方程聯立,得到韋達定理的形式;利用垂直關系可得向量數量積等于零,代入韋達定理的結論整理可得
;利用點到直線距離公式求得圓心到直線距離
,代入
可求得
;②當
的斜率不存在時,可求得
方程,易知其與圓相切;綜合兩種情況可得結論.
(1)橢圓上的點與兩個焦點構成的三角形中,面積最大時橢圓上的點為短軸端點
,又
,
橢圓
的標準方程為
(2)設,
①當的斜率存在時,設
由得:
則,
又
,即
滿足
到直線
的距離
又圓的半徑
直線
與圓
相切
②當的斜率不存在時,
所在的兩條直線分別為
與橢圓方程聯立可求得交點橫坐標為或
可得到所在的直線為:
或
直線
與圓
相切
綜上所述:當時,直線
與圓
相切
科目:高中數學 來源: 題型:
【題目】在直角坐標系平面上的一列點
,
,…,
,記為
,若由
構成的數列
滿足
,
,其中
為與
軸正方向相同的單位向量,則稱
為
點列.
(1)判斷,
,
,…,
,是否為
點列,并說明理由;
(2)若為
點列.且點
在點
的右上方,(即
)任取其中連續三點
,
,
判斷
的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為
點列,正整數
,滿足
.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區,在亞洲熱帶地區廣泛栽培.檳榔是重要的中藥材,在南方一些少數民族還有將果實作為一種咀嚼嗜好品,但其被世界衛生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,
兩個少數民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數字,葉表示個位數字).
(1)從班的樣本數據中隨機抽取一個不超過19的數據記為
,從
班的樣本數據中隨機抽取一個不超過21的數據記為
,求
的概率;
(2)從所有咀嚼檳榔顆數在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產同一種產品,甲車間有工人人,乙車間有工人
人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產完成的一件產品的事件(單位:
)進行統計,按照
進行分組,得到下列統計圖.
分別估算兩個車間工人中,生產一件產品時間少于
的人數;
分別估計兩個車間工人生產一件產品時間的平均值,并推測車哪個車間工人的生產效率更高?
從第一組生產時間少于
的工人中隨機抽取
人,求抽取
人中,至少
人生產時間少于
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宋元時期數學名著《算學啟蒙》中有關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入,
,則輸出的
等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直四棱柱中,
,
:
(1)求證:平面
;
(2)現將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為
,寫出
的解析式;(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線Γ的方程為y2=4x,點P的坐標為(1,1).
(1)過點P,斜率為﹣1的直線l交拋物線Γ于U,V兩點,求線段UV的長;
(2)設Q是拋物線Γ上的動點,R是線段PQ上的一點,滿足2
,求動點R的軌跡方程;
(3)設AB,CD是拋物線Γ的兩條經過點P的動弦,滿足AB⊥CD.點M,N分別是弦AB與CD的中點,是否存在一個定點T,使得M,N,T三點總是共線?若存在,求出點T的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com