【題目】已知關于的不等式
(
為實數)的解集為
,集合
.
(1)若,求
的取值范圍;
(2)若,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為
和
的圓上的動點.動點
從初始位置
開始,按逆時針方向以角速度
作圓周運動,同時點
從初始位置
開始,按順時針方向以角速度
作圓周運動.記
時刻,點
的縱坐標分別為
.
(Ⅰ)求時刻,
兩點間的距離;
(Ⅱ)求關于時間
的函數關系式,并求當
時,這個函數的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩種商品,經營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關系有經驗公式:P=,Q=
.今有3萬元資金投入經營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得的最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形,如何設計這塊矩形場地的長和寬,能使面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規定問卷得分不低于70分的市民稱為“環保關注者”,請完成答題卡中的列聯表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環保關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“環保達人”.視頻率為概率.
①在我市所有“環保達人”中,隨機抽取3人,求抽取的3人中,既有男“環保達人”又有女“環保達人”的概率;
②為了鼓勵市民關注環保,針對此次的調查制定了如下獎勵方案:“環保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
現某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求
的分布列及數學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,其左頂點
在圓
上.
(1)求橢圓的方程;
(2)若點為橢圓
上不同于點
的點,直線
與圓
的另一個交點為
.是否存在點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了適應高考改革,某中學推行“創新課堂”教學.高一平行甲班采用“傳統教學”的教學方式授課,高一平行乙班采用“創新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統計分析,結果如下表:(記成績不低于
分者為“成績優秀”)
分數 | |||||||
甲班頻數 | |||||||
乙班頻數 |
(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷是否有
以上的把握認為“成績優秀與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優秀 | |||
成績不優秀 | |||
總計 |
(Ⅱ)現從上述樣本“成績不優秀”的學生中,抽取人進行考核,記“成績不優秀”的乙班人數為
,求
的分布列和期望.
參考公式:,其中
.
臨界值表
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com