精英家教網 > 高中數學 > 題目詳情

【題目】已知關于的不等式為實數)的解集為,集合.

1)若,求的取值范圍;

2)若,求的取值范圍.

【答案】1;(2.

【解析】

1)由題意可知,關于的不等式上恒成立,分兩種情況討論:,由此可得出實數的取值范圍;

2)由題意知,關于的不等式在區間上恒成立,對實數分類討論,根據題意列出關于實數的不等式(組),即可求出實數的取值范圍.

1,則關于的不等式上恒成立.

①當時,則有,解得,不合乎題意;

②當時,則有,整理得,解得,

此時.

綜上所述,實數的取值范圍是;

2)由題意知,關于的不等式在區間上恒成立.

①當時,則有,解得,合乎題意;

②當時,令,則,解得

此時;

③當且當時,,則,且,,

此時,,合乎題意.

綜上所述,實數的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,點分別是圓心在原點,半徑為的圓上的動點.動點從初始位置開始,按逆時針方向以角速度作圓周運動,同時點從初始位置開始,按順時針方向以角速度作圓周運動.記時刻,點的縱坐標分別為.

(Ⅰ)求時刻,兩點間的距離;

(Ⅱ)求關于時間的函數關系式,并求當時,這個函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知球的直徑,是該球球面上的兩點,,則棱錐的體積為_______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩種商品,經營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關系有經驗公式:P=,Q= .今有3萬元資金投入經營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應為多少?能獲得的最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形,如何設計這塊矩形場地的長和寬,能使面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規定問卷得分不低于70分的市民稱為“環保關注者”,請完成答題卡中的列聯表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環保關注者”與性別有關?

(2)若問卷得分不低于80分的人稱為“環保達人”.視頻率為概率.

①在我市所有“環保達人”中,隨機抽取3人,求抽取的3人中,既有男“環保達人”又有女“環保達人”的概率;

②為了鼓勵市民關注環保,針對此次的調查制定了如下獎勵方案:“環保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:

紅包金額(單位:元)

10

20

概率

現某市民要參加此次問卷調查,記(單位:元)為該市民參加間卷調查獲得的紅包金額,求的分布列及數學期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,其左頂點在圓上.

(1)求橢圓的方程;

(2)若點為橢圓上不同于點 的點,直線與圓的另一個交點為.是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了適應高考改革,某中學推行“創新課堂”教學.高一平行甲班采用“傳統教學”的教學方式授課,高一平行乙班采用“創新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統計分析,結果如下表:(記成績不低于分者為“成績優秀”)

分數

甲班頻數

乙班頻數

(Ⅰ)由以上統計數據填寫下面的列聯表,并判斷是否有以上的把握認為“成績優秀與教學方式有關”?

甲班

乙班

總計

成績優秀

成績不優秀

總計

(Ⅱ)現從上述樣本“成績不優秀”的學生中,抽取人進行考核,記“成績不優秀”的乙班人數為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视