【題目】已知函數f(x)是定義在R上的奇函數,當x<0時,f(x)=(x+1)ex則對任意的m∈R,函數F(x)=f(f(x))﹣m的零點個數至多有( 。
A.3個
B.4個
C.6個
D.9個
【答案】A
【解析】解:當x<0時,f(x)=(x+1)ex,可得f′(x)=(x+2)ex,可知x∈(﹣∞,﹣2),函數是減函數,x∈(﹣2,0)函數是增函數,
f(﹣2)= ,f(﹣1)=0,且x→0時,f(x)→1,又f(x)是定義在R上的奇函數,f(0)=0,而x∈(﹣∞,﹣1)時,f(x)<0,
所以函數的圖象如圖:令t=f(x)則f(t)=m,
由圖象可知:當t∈(﹣1,1)時,方程f(x)=t至多3個根,當t(﹣1,1)時,方程沒有實數根,
而對于任意m∈R,方程f(t)=m至多有一個根,t∈(﹣1,1),
從而函數F(x)=f(f(x))﹣m的零點個數至多有3個.
故答案為:A.
當x<0時,f(x)=(x+1)ex,可得f′(x)=(x+2)ex可知x∈(﹣∞,﹣2),函數是減函數,x∈(﹣2,0)函數是增函數,并且f(﹣2)= ,f(﹣1)=0,且x→0時,f(x)→1,根據f(x)為奇函數,其圖像關于原點對稱,根據分析結果,作出f(x)的大致圖象,數形結合不難得出零點最多為3個.
科目:高中數學 來源: 題型:
【題目】已知曲線C 的參數方程為 (α為參數),以直角坐標系原點O 為極點,x 軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C 的極坐標方程;
(Ⅱ)設l1:θ= ,l2:θ=
,若l 1、l2與曲線C 相交于異于原點的兩點 A、B,求△AOB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學人力資源部計劃2016年招聘2名數學教師,共5名應聘者進入最后課堂實錄環節.5名數學組評審專家給出評分如表:
評審專家/應聘老師 | 1 | 2 | 3 | 4 | 5 |
評審專家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
評審專家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
評審專家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
評審專家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
評審專家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依據去掉一個最高分和一個最低分規則計算應聘老師成績,試確定最終應聘成功的2名數學老師的序號;
(Ⅱ)在課堂實錄環節,每名應聘老師都需要從5名評審專家中隨機選取2名進行點評,且每名應聘老師的選擇互不影響,設X表示評審專家A進行點評的次數,求X的分布列以及數學期望;
(Ⅲ)記評審專家A與評審專家B給出的評分的方差分別為 ,試比較
與
的大。ㄖ恍鑼懗鼋Y論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,等腰梯形ABCD的底角 A等于60°,直角梯形 ADEF所在的平面垂直于平面ABCD,∠EDA=90°,且ED=AD=2AB=2AF.
(1)證明:平面ABE⊥平面EBD;
(2)若三棱錐 A﹣BDE的外接球的體積為 ,求三棱錐 A﹣BEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: 的離心率為
,F1 , F2分別是它的左、右焦點,且存在直線l,使F1 , F2關于l的對稱點恰好為圓C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一條直徑的兩個端點.
(1)求橢圓E的方程;
(2)設直線l與拋物線y2=2px(p>0)相交于A,B兩點,射線F1A,F1B與橢圓E分別相交于點M,N,試探究:是否存在數集D,當且僅當p∈D時,總存在m,使點F1在以線段MN為直徑的圓內?若存在,求出數集D;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}是公差為d(d≠0)的等差數列,Sn為其前n項和,a1 , a2 , a5成等比數列.
(Ⅰ)證明S1 , S3 , S9成等比數列;
(Ⅱ)設a1=1,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】命題p:數列{an}的前n項和Sn=an2+bn+c(a≠0);命題q:數列{an}是等差數列.則p是q的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時滿足條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com