【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如下表:
質量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(Ⅰ)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品92%”的規定?
(Ⅱ)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(Ⅲ)該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
【答案】(Ⅰ)見解析; (Ⅱ);(Ⅲ)大約提升了17.6
【解析】試題分析:(1)根據頻率分布直方圖,一、二等品所占比例的估計值為
,可做出判斷.
(2)由頻率分布直方圖的頻率分布可知8件產品中,一等品3件,二等品4件,三等品1件,分類討論各種情況可得.
(3)算出“質量提升月”活動前,后產品質量指標值為,可得質量指標值的均值比活動前大約提升了17.6
試題解析:(1)根據抽樣調查數據,一、二等品所占比例的估計值為,由于該估計值小于0.92,故不能認為該企業生產的這種產品符合“一、二等品至少要占全部產品92%”的規定.
(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5、0.125,故在樣本中用分層抽樣方法抽取的8件產品中,一等品3件,二等品4件,三等品1件,再從這8件產品中隨機抽取4件,一、二、三等品都有的情況有2種:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.
(3)“質量提升月”活動前,該企業這種產品的質量指標值的均值約為
“質量提升月”活動后,產品質量指標值近似滿足
,則
.
所以,“質量提升月”活動后的質量指標值的均值比活動前大約提升了17.6
科目:高中數學 來源: 題型:
【題目】交通指數是交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念.記交通指數為,其范圍為
,分別有5個級別:
暢通;
基本暢通;
輕度擁堵;
中度擁堵;
嚴重擁堵.早高峰時段(
),從貴陽市交通指揮中心隨機選取了二環以內50個交通路段,依據交通指數數據繪制的直方圖如圖所示:
(1)據此直方圖估算交通指數時的中位數和平均數;
(2)據此直方圖求出早高峰二環以內的3個路段至少有兩個嚴重擁堵的概率是多少?
(3)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人所用時間的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的焦點在
軸上,橢圓
的左頂點為
,斜率為
的直線交橢圓
于
,
兩點,點
在橢圓
上,
,直線
交
軸于點
.
(Ⅰ)當點為橢圓的上頂點,
的面積為
時,求橢圓的離心率;
(Ⅱ)當,
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機抽取兩個球,求取出的球的編號之和不大于4的概率;
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為大力提倡“厲行節約,反對浪費”,某市通過隨機詢問100名性別不同的居民是否能做到“光盤”行動,得到如下的列聯表:( )
做不到“光盤” | 能做到“光盤” | |
男 | 45 | 10 |
女 | 30 | 15 |
附:
P(K2 | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
參照附表,得到的正確結論是
A.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別有關”
B.在犯錯誤的概率不超過l%的前提下,認為“該市居民能否做到‘光盤’與性別無關”
C.有90%以上的把握認為“該市居民能否做到‘光盤’與性別有關”
D.有90%以上的把握認為“該市居民能否做到‘光盤’與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函數f(x)的最小正周期和單調增區間;
(2)當x∈[ ,
]時,求函數f(x)的最大值,最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校的特長班有50名學生,其中有體育生20名,藝術生30名,在學校組織的一次體檢中,該班所有學生進行了心率測試,心率全部介于50次/分到75次/分之間,現將數據分成五組,第一組,第二組
,…,第五組
,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為
.
(Ⅰ)求的值,并求這50名同學心率的平均值;
(Ⅱ)因為學習專業的原因,體育生常年進行系統的身體鍛煉,藝術生則很少進行系統的身體鍛煉,若從第一組和第二組的學生中隨機抽取一名,該學生是體育生的概率為0.8,請將下面的列聯表補充完整,并判斷是否有99.5%的把握認為心率小于60次/分與常年進行系統的身體鍛煉有關?說明你的理由.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: ,其中
心率小于60次/分 | 心率不小于60次/分 | 合計 | |
體育生 | 20 | ||
藝術生 | 30 | ||
合計 | 50 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com