精英家教網 > 高中數學 > 題目詳情
在數列{an}中,若存在一個確定的正整數T,對任意n∈N*滿足an+T=an,則稱{an}是周期數列,T叫做它的周期.已知數列{xn}滿足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,當數列{xn}的周期為3時,則{xn}的前2013項的和S2013=______.
∵xn+2=|xn+1-xn|,且x1=1,x2=a,(a≤1,a≠0)
∴x3=|x2-x1|=1-a
∴該數列的前3項的和S3=1+a+(1-a)=2
∵數列{xn}周期為3,
∴該數列的前2013項的和S2010=S671×3=671×2=1342.
故答案為:1342.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,若a1=
1
2
an=
1
1-an-1
(n≥2,n∈N*),則a2010等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數),則稱{an}為“等方差數列”,下列是對“等方差數列”的判斷;
①若{an}是等方差數列,則{an2}是等差數列;
②{(-1)n}是等方差數列;
③若{an}是等方差數列,則{akn}(k∈N*,k為常數)也是等方差數列;
④若{an}既是等方差數列,又是等差數列,則該數列為常數列.
其中正確命題序號為(  )
A、①②③B、①②④C、①②③④D、②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,若a1=2,an=
1
1-an-1
(n≥2,n∈N*),則a7
等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,若a1=2,a2=6,且當n∈N*時,an+2是an•an+1的個位數字,則a2011=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知無窮數列{an}具有如下性質:①a1為正整數;②對于任意的正整數n,當an為偶數時,an+1=
a n
2
;當an為奇數時,an+1=
an+1
2
.在數列{an}中,若當n≥k時,an=1,當1≤n<k時,an>1(k≥2,k∈N*),則首項a1可取數值的個數為
 
(用k表示).

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视