精英家教網 > 高中數學 > 題目詳情
精英家教網直線l:3x+4y-12=0與x軸和y軸分別交于A,B兩點,直線l1和AB,OA分別交于點C,D,且平分△AOB的面積.
(1)求cos∠BAO的值;
(2)求線段CD長度的最小值.
分析:(1)先根據直線l的方程得到A,B的坐標,進而可得到|0A|、|OB|的長度,進而根據勾股定理求出|AB|的距離,即可得到cos∠BAO的值.
(2)先設|AC|=m,|AD|=n,根據cos∠BAO的值可求其正弦值,再由三角形的面積得到mn的值,再表示出|CD|的表達式結合基本不等式的內容可求得線段CD長度的最小值.
解答:精英家教網解:(1)∵l:3x+4y-12=0,令x=0,可得y=3;令y=0,可得x=4;
即|OA|=4,|OB|=3∴AB=
32+42
=5
,∴cos∠BAO=
AO
AB
=
4
5

(2)設|AC|=m,|AD|=n
cos∠BAO=
4
5
,得sin∠BAO=
3
5
,
S△AOB=
1
2
×3×4=6

S△ACD=
1
2
mnsin∠BAO=
1
2
mn×
3
5
=
1
2
S△AOB=
1
2
×6=3
∴mn=10
|CD|=
m2+n2-2mncos∠CAD
=
m2+n2-2mn×
4
5
=
m2+n2-16

2mn-16
=
2×10-16
=2
(當且僅當m=n時等號成立)
∴線段CD長度的最小值為2
點評:本題主要考查三角函數中余弦值的求法和余弦定理的應用、基本不等式的應用.考查基礎知識的綜合應用和靈活應用.三角函數題以基礎為主,要強化其基礎題得復習.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知P是直線l:3x-4y+11=0上的動點,PA、PB是圓x2+y2-2x-2y+1=0的兩條切線,C是圓心,那么四邊形PACB面積的最小值是( 。
A、
2
B、2
2
C、
3
D、2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l與3x+4y-7=0的傾斜角相等,并且與兩坐標軸圍成的三角形面積等于24,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

若P是圓(x+2)2+(y-1)2=4上的動點,則點P到直線l:3x-4y-5=0的距離的最大值是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

求分別滿足下列條件的直線方程.
(1)經過直線2x+y+2=0和3x+y+1=0的交點且與直線2x+3y+5=0平行;
(2)與直線l:3x+4y-12=0垂直且與坐標軸圍成的三角形面積為6.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇二模)選做題
A.選修4-1:幾何證明選講
如圖,自⊙O外一點P作⊙O的切線PC和割線PBA,點C為切點,割線PBA交⊙O于A,B兩點,點O在AB上.作CD⊥AB,垂足為點D.
求證:
PC
PA
=
BD
DC

B.選修4-2:矩陣與變換
設a,b∈R,若矩陣A=
a0
-1b
把直線l:y=2x-4變換為直線l′:y=x-12,求a,b的值.
C.選修4-4:坐標系與參數方程
求橢圓C:
x2
16
+
y2
9
=1上的點P到直線l:3x+4y+18=0的距離的最小值.
D.選修4-5不等式選講
已知非負實數x,y,z滿足x2+y2+z2+x+2y+3z=
13
4
,求x+y+z的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视