精英家教網 > 高中數學 > 題目詳情
某公司全年的利潤為b元,其中一部分作為獎金發給n位職工,獎金分配方案如下:首先將職工按工作業績(工作業績均不相同)從大到小,由1到n排序,第1位職工得獎金元,然后再將余額除以n發給第2位職工,按此方法將獎金逐一發給每位職工,并將最后剩余部分作為公司發展基金.
(1)設ak(1≤kn)為第k位職工所得獎金金額,試求a2,a3,并用knb表示ak(不必證明);
(2)證明akak+1(k=1,2,…,n-1),并解釋此不等式關于分配原則的實際意義;
(3)發展基金與nb有關,記為Pn(b),對常數b,當n變化時,求Pn(b).
(1) ak= (1-)k1b; (2) 獎金分配方案體現了“按勞分配”或“不吃大鍋飯”的原則;(3).
(1)第1位職工的獎金a1=,
第2位職工的獎金a2=(1-)b,
第3位職工的獎金a3=(1-)2b,…,
k位職工的獎金ak= (1-)k1b;
(2)akak+1=(1-)k1b>0,此獎金分配方案體現了“按勞分配”或“不吃大鍋飯”的原則。
(3)設fk(b)表示獎金發給第k位職工后所剩余數,
f1(b)=(1-)b,f2(b)=(1-)2b,…,fk(b)=(1-)kb.
Pn(b)=fn(b)=(1-)nb,
.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=a1x+a2x2+a3x3+…+anxnn∈N*a1、a2a3、……、an構成一個數列{an},滿足f(1)=n2.
(1)求數列{an}的通項公式,并求;
(2)證明0<f()<1.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)設數列的前和為,已知,,,
一般地,).
(Ⅰ)求;(Ⅱ)求;(Ⅲ)求和:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列{an}為等差數列,公差d≠0,由{an}中的部分項組成的數列
a,a,…,a,…為等比數列,其中b1=1,b2=5,b3=17.
(1)求數列{bn}的通項公式;
(2)記Tn=Cb1+Cb2+Cb3+…+Cbn,求.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知是各項都為正數的數列,為其前項的和,且
(I)分別求的值;(II)求數列的通項;(III)求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知為等差數列,,則         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在等差數列中,已知
(1)求首項與公差,并寫出通項公式;
(2)中有多少項屬于區間?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

是首項為1的正項數列,且
則數列的通項        .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视