精英家教網 > 高中數學 > 題目詳情
若tanx=2,則tan(+2x)的值為_________________.

-

解析:tan2x==-,

tan(+2x)=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:
①正切函數的圖象的對稱中心是唯一的;
②y=|sinx|、y=|tanx|的周期分別為π、
π
2
;
③若x1>x2,則sinx1>sinx2;
④若f(x)是R上的奇函數,它的最小正周期為T,則f(-
T
2
)=0.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①“x=2”是“x2=4”的充分不必要條件;
②設A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,則實數t的取值范圍為[3,+∞);
③若log2x+logx2≥2,則x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命題P:對任意的x∈R,函數y=cos(2x-
π
3
)
的遞減區間為[kπ-
π
12
,kπ+
12
](k∈Z)
,命題q:存在x∈R,使tanx=1,則命題“p且q”是真命題.
其中真命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•金華模擬)已知函數f(x)=(
1
e
)x-tanx(-
π
2
<x<
π
2
)
,若實數x0是函數y=f(x)的零點,且0<t<x0,則f(t)的值( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•盧灣區一模)將奇函數的圖象關于原點(即(0,0))對稱這一性質進行拓廣,有下面的結論:
①函數y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關于點(a,b)成中心對稱.
②函數y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數的充要條件是y=f(x)的圖象關于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結論完成下列各題:
(1)寫出函數f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數,試問函數f(x)=
x+m
x-1
的圖象是否關于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

給出下列命題:
①正切函數的圖象的對稱中心是唯一的;
②y=|sinx|、y=|tanx|的周期分別為π、
π
2
;
③若x1>x2,則sinx1>sinx2;
④若f(x)是R上的奇函數,它的最小正周期為T,則f(-
T
2
)=0.
其中正確命題的序號是______.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视