精英家教網 > 高中數學 > 題目詳情
工廠生產某種產品,次品率與日產量(萬件)間的關系為常數,且),已知每生產一件合格產品盈利元,每出現一件次品虧損元.
(1)將日盈利額(萬元)表示為日產量(萬件)的函數;
(2)為使日盈利額最大,日產量應為多少萬件?(注:
(1)日盈利額(萬元)與日產量(萬件)的函數關系式為;
(2)當日產量為萬件時,日盈利額最大.

試題分析:(1)根據“日盈利額合格產品盈利次品虧損”的原則,以及對日產量為自變量進行分段求出日盈利額(萬元)表示為日產量(萬件)的函數;(2)利用導數求出(1)中分段函數在每段定義域上的最值,進而確定日盈利額的最大值以及相應的值.
試題解析:(1)當時,,               2分
時,
            4分
∴日盈利額(萬元)與日產量(萬件)的函數關系式為
                     5分
(2)當時,日盈利額為0
時,
 令(舍去)
∴當時,
上單增
最大值                        9分
時,上單增,在上單減
最大值                                10分
綜上:當時,日產量為萬件日盈利額最大
時,日產量為3萬件時日盈利額最大
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

停車場預計“十·一”國慶節這天將停放大小汽車1200輛次,該停車場的收費標準為:大車每輛次10元,小車每輛次5元.根據預計,解答下面的問題:
(1)寫出國慶節這天停車場的收費金額y(元)與小車停放輛次x(輛)之間的函數關系式,并指出自變量x的取值范圍;
(2)如果國慶節這天停放的小車輛次占停車總輛次的65%~85%,請你估計國慶節這天該停車場收費金額的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,.
(Ⅰ)若函數的圖象與軸無交點,求的取值范圍;
(Ⅱ)若函數上存在零點,求的取值范圍;
(Ⅲ)設函數,.當時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的兩個零點分別位于區間
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的定義域為D,若對于任意,當時都有,則稱函數在D上為非減函數,設函數在[0,1]上為非減函數,且滿足以下三個條件:①;②;③,則等于(    )
A.B.C.1D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數上的導函數為,上的導函數為,若在上,恒成立,則稱函數上為“凸函數”.已知當時,上是“凸函數”,則上(    )
A.既沒有最大值,也沒有最小值B.既有最大值,也有最小值
C.有最大值,沒有最小值D.沒有最大值,有最小值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義兩種運算:,則函數  ( )
A.是奇函數B.是偶函數
C.既是奇函數又是偶函數 D.既不是奇函數又不是偶函數

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數的一個零點在區間內,則實數的取值范圍是          .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數,則(   )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视