精英家教網 > 高中數學 > 題目詳情
設各項為正的數列{an},其前n項和為Sn,并且對所有正整數n,an與2的等差中項等于Sn與2的等比中項.
(1)寫出數列{an}的前二項;     
(2)求數列{an}的通項公式(寫出推證過程);
(3)令bn=an•(3n-1),求bn的前n項和Tn
【答案】分析:(1)先根據an與2的等差中項等于Sn與2的等比中項建立等式關系,然后對n分別取1和2,求出數列{an}的前二項;
(2)將平方得,然后利用已知Sn求an的方法進行求解;
(3)bn=an•(3n-1)=(4n-2)3n-(4n-2),(4n-2)3n是由等差數列4n-2與等比數列3n乘積構成,利用錯位相減法求和,最后求出bn的前n項和Tn
解答:解:(1)由題意可得
解得a1=2,
解得a2=6
(2)由
當n≥2時,an=Sn-Sn-1
即可得到(an+an-1)(an-an-1-4)=0
∵各項為正的數列{an},
∴an-an-1=4
因此數列{an}是以2為首項,4為公差的等差數列,故an=4n-2
(3)由bn=an(3n-1-1),得bn=(4n-2)(3n-1)=(4n-2)3n-(4n-2)
記cn=(4n-2)3n,其n項和為Un,則由錯位相減法得Un=3(1-3n)+(2n-1)3n+1+3=(2n-2)3n+1+6

點評:本題主要考查了等差中項、等差數列的通項和錯位相減法在求和中的應用,同時考查了計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函數f(x)在其定義域內是增函數,求b的取值范圍.
(2)在(1)的結論下,設g(x)=e2x+bex,x∈[0,ln2],求函數g(x)的最小值;
(3)設各項為正的數列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*,求證:an≤2n-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=lnx-ax+1(x>0)
(1)若對任意的x∈[1,+∞),f(x)≤0恒成立,求實數a的最小值.
(2)若a=
5
2
且關于x的方程f(x)=-
1
2
x2
+b在[1,4]上恰有兩個不相等的實數根,求實數b的取值范圍;
(3)設各項為正的數列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*.求證:an≤2n-1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
lnx+ax
(a∈R)
(Ⅰ)求f(x)的極值;
(Ⅱ)若函數f(x)的圖象與函數g(x)=1的圖象在區間(0,e2]上有公共點,求實數a的取值范圍;
(Ⅲ)設各項為正的數列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*,求證:an2n-1

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省三明一中高三(上)期中數學試卷(理科)(解析版) 題型:解答題

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函數f(x)在其定義域內是增函數,求b的取值范圍.
(2)在(1)的結論下,設g(x)=e2x+bex,x∈[0,ln2],求函數g(x)的最小值;
(3)設各項為正的數列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*,求證:an≤2n-1.

查看答案和解析>>

科目:高中數學 來源:2013年福建省泉州市永春一中高三5月質檢數學試卷(理科)(解析版) 題型:解答題

已知f(x)=lnx-ax2-bx(a≠0),
(1)若a=-1,函數f(x)在其定義域內是增函數,求b的取值范圍.
(2)在(1)的結論下,設g(x)=e2x+bex,x∈[0,ln2],求函數g(x)的最小值;
(3)設各項為正的數列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*,求證:an≤2n-1.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视