【題目】2018年是中國改革開放的第40周年,為了充分認識新形勢下改革開放的時代性,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現從年齡在內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用
表示年齡在
內的人數,求
的分布列和數學期望;
(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在
的概率為
.當
最大時,求
的值.
【答案】(1)分布列見解析;;(2)7.
【解析】
(1)根據分層抽樣的方法判斷出年齡在內的人數,可得
的可能取值為0,1,2,結合組合知識,利用古典概型概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得
的數學期望;(2)設年齡在
內的人數為
,則
,設
,可得若
,則
,
;若
,則
,
,從而可得結果.
(1)按分層抽樣的方法抽取的8人中,
年齡在內的人數為
人,
年齡在內的人數為
人,
年齡在內的人數為
人.
所以的可能取值為0,1,2,
所以,
,
,
所以的分布列為
0 | 1 | 2 | |
.
(2)設在抽取的20名市民中,年齡在內的人數為
,
服從二項分布.由頻率分布直方圖可知,年齡在
內的頻率為
,
所以,
所以
.
設
,
若,則
,
;
若,則
,
.
所以當時,
最大,即當
最大時,
.
科目:高中數學 來源: 題型:
【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結構能使它任意拋至水平面后,總有一端所在的直線豎直向上,并記組成該“釘”的四條線段的公共點為O,釘尖為.
⑴設,當
,
,
在同一水平面內時,求
與平面
所成角的大小
結果用反三角函數值表示
.
⑵若該“釘”的三個釘尖所確定的三角形的面積為,要用某種線型材料復制100枚這種“釘”
損耗忽略不計
,共需要該種材料多少米?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某超市在節日期間進行有獎促銷,規定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續摸球.按規定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次摸獎停止的概率;
(2)記X為1名顧客摸獎獲得的獎金數額,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】超市為了防止轉基因產品影響民眾的身體健康,要求產品在進入超市前必須進行兩輪轉基因檢測,只有兩輪都合格才能銷售,否則不能銷售.已知某產品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為
,兩輪檢測是否合格相互沒有影響.
(1)求該產品不能銷售的概率;
(2)如果產品可以銷售,則每件產品可獲利50元;如果產品不能銷售,則每件產品虧損60元.已知一箱中有產品4件,記一箱產品獲利元,求
的分布列,并求出均值
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]:在直角坐標系中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線,
的直角坐標方程;
(2)判斷曲線,
是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)6個人按下列要求站一橫排,甲、乙必須相鄰,有多少種不同的站法?
(2)6個人按下列要求站一橫排,甲不站左端,乙不站右端.有多少種不同的站法?
(3)用0,1,2,3,4,5這六個數字可以組成多少個六位數且是奇數(無重復數字的數)?
(4)用0,1,2,3,4,5這六個數字可以組成多少個個位上的數字不是5的六位數(無重復數字的數)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如表提供了工廠技術改造后某種型號設備的使用年限和所支出的維修費
(萬元)的幾組對照數據:
| 2 | 3 | 4 | 5 | 6 |
| 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,
.
(1)若知道對
呈線性相關關系,請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;
(2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com