【題目】某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規則如下:抽獎者擲各面標有
點數的正方體骰子
次,若擲得點數大于
,則可繼續在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有
個紅球與
個白球,抽獎者從箱中任意摸出
個球,若
個球均為紅球,則獲得一等獎,若
個球為
個紅球和
個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).
若
,求顧客參加一次抽獎活動獲得三等獎的概率;
若一等獎可獲獎金
元,二等獎可獲獎金
元,三等獎可獲獎金
元,記顧客一次抽獎所獲得的獎金為
,若商場希望
的數學期望不超過
元,求
的最小值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程是(t是參數).在以O為極點,x軸正半軸為極軸的極坐標系中,曲線
.
(1)當,
時,求直線l與曲線C的直角坐標方程;
(2)當時,若直線l與曲線C相交于A,B兩點,設
,且
,求直線l的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值
時,三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創新型國家,把握世界新一輪科技革命和產業變革大勢,深入實施創新驅動發展戰略,不斷增強經濟創新力和競爭力.某手機生產企業積極響應政府號召,大力研發新產品,爭創世界名牌.為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數據,如表所示:
單價 | ||||||
銷量 |
已知.
(1)若變量具有線性相關關系,求產品銷量
(百件)關于試銷單價
(千元)的線性回歸方程
;
(2)用(1)中所求的線性回歸方程得到與對應的產品銷量的估計值
.當銷售數據
對應的殘差的絕對值
時,則將銷售數據
稱為一個“好數據”.現從
個銷售數據中任取
個子,求“好數據”個數
的分布列和數學期望
.
(參考公式:線性回歸方程中的估計值分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)若直線與
相切于第二象限的點
,與
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成
元;乙公司無底薪,
單以內(含
單)的部分送餐員每單抽成
元,超過
單的部分送餐員每單抽成
元.現從這兩家公司各隨機選取一名送餐員,分別記錄其
天的送餐單數,得到如下頻數分布表:
送餐單數 | 38 | 39 | 40 | 41 | 42 |
甲公司天數 | 10 | 10 | 15 | 10 | 5 |
乙公司天數 | 10 | 15 | 10 | 10 | 5 |
(1)從記錄甲公司的天送餐單數中隨機抽取
天,求這
天的送餐單數都不小于
單的概率;
(2)假設同一公司的送餐員一天的送餐單數相同,將頻率視為概率,回答下列兩個問題:
①求乙公司送餐員日工資的分布列和數學期望;
②小張打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,小張應選擇哪家公司應聘?明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:平面內兩個分別以原點和兩坐標軸為對稱中心和對稱軸的橢圓E1,E2,它們的長短半軸長分別為a1,b1和a2,b2,若滿足a2=a1k,b2=b1k(k∈Z,k≥2),則稱E2為E1的k級相似橢圓,己知橢圓E1: =1,E2為E1的2級相似橢圓,且焦點共軸,E1與E2的離心率之比為2:
.
(Ⅰ)求E2的方程;
(Ⅱ)已知P為E2上任意一點,過點P作E1的兩條切線,切點分別為A(x1,y1)、B(x2,y2).
①證明:E1在A(x1,y1)處的切線方程為=1;
②是否存在一定點到直線AB的距離為定值,若存在,求出該定點和定值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com