精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=lnx-ax+1,a∈R是常數.
(1)求函數y=f(x)的圖象在點P(1,f(1))處的切線l的方程;
(2)證明函數y=f(x)(x≠1)的圖象在直線l的下方;
(3)若函數y=f(x)有零點,求實數a的取值范圍.
分析:(1)已知f(x)=lnx-ax+1,對你進行求導,根據導數和斜率的關系,求出切線的方程;
(2)作F(x)=f(x)-(1-a)x=lnx-x+1,x>0,利用導數證得任意x>0且x≠1,F(x)<0,從而有f(x)<(1-a)x,即函數y=f(x)(x≠1)的圖象在直線l的下方.
(3)令y=0,進行變形lnx=ax-1,即a=
lnx+1
x
,令 g(x)=
lnx+1
x
,利用導數的方法,研究其單調性及最大值,從而求出實數a的取值范圍.
解答:解:(1)f′(x)=
1
x
-a
…(2分)f(1)=-a+1,kl=f'(1)=1-a,
所以切線l的方程為y-f(1)=kl(x-1),即y=(1-a)x.…(4分)
(2)令F(x)=f(x)-(1-a)x=lnx-x+1,x>0,
F′(x)=
1
x
-1 =
1
x
(1-x) ,解F′(x)=0得x=1

x (0,1) 1 (1,+∞)
F'(x) + 0 -
F(x) 最大值
F(1)<0,所以?x>0且x≠1,F(x)<0,f(x)<(1-a)x,
即函數y=f(x)(x≠1)的圖象在直線l的下方.      …(9分)
(3)y=f(x)有零點,即f(x)=lnx-ax+1=0有解,a=
lnx+1
x

令 g(x)=
lnx+1
x
,g′(x)=(
lnx+1
x
)′=
1-(lnx+1)
x2
=-
lnx
x2
,
解g'(x)=0得x=1.…(11分)
則g(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,
當x=1時,g(x)的最大值為g(1)=1,
所以a≤1.…(13分)
點評:本題主要考查導函數的正負與原函數的單調性之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減,還考查了數形結合的思想,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2+2|lnx-1|.
(1)求函數y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=xlnx
(Ⅰ)求函數f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數a的不同取值,寫出該函數的單調增區間;
(2)已知當x>0時,函數在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數的解析式;
(3)記(2)中的函數圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视