【題目】已知二次函數交
軸于
兩點(
不重合),交
軸于
點. 圓
過
三點.下列說法正確的是( )
① 圓心在直線
上;
② 的取值范圍是
;
③ 圓半徑的最小值為
;
④ 存在定點,使得圓
恒過點
.
A. ①②③B. ①③④C. ②③D. ①④
科目:高中數學 來源: 題型:
【題目】對于定義域為R的函數f(x),若滿足①f(0)=0;②當x∈R,且x≠0時,都有xf'(x)>0;③當x1≠x2 , 且f(x1)=f(x2)時,x1+x2<0,則稱f(x)為“偏對稱函數”. 現給出四個函數:g(x)= ;φ(x)=ex﹣x﹣1.
則其中是“偏對稱函數”的函數個數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某海面上有、
、
三個小島(面積大小忽略不計),
島在
島的北偏東
方向
處,
島在
島的正東方向
處.
(1)以為坐標原點,
的正東方向為
軸正方向,
為單位長度,建立平面直角坐標系,寫出
、
的坐標,并求
、
兩島之間的距離;
(2)已知在經過、
、
三個點的圓形區域內有未知暗礁,現有一船在
島的南偏西
方向距
島
處,正沿著北偏東
行駛,若不改變方向,試問該船有沒有觸礁的危險?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,平面
平面
,四邊形
為正方形,四邊形
為梯形,且
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)在線段上是否存在點
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
的參數方程為
(
為參數).以坐標原點
為極點,以坐標原點
為極點,
軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程;
(Ⅱ)若曲線上的點到直線
的最大距離為6,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統計,作出莖葉圖如圖.記成績不低于90分者為“成績優秀”.
(1)在乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的2個均“成績優秀”的概率;
(2)由以上統計數據作出列聯表,并判斷能否在犯錯誤的概率不超過0.1的前提下認為:“成績優秀”與教學方式有關.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
參考公式:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com