數列的前n項和為
,
(I)證明:數列是等比數列;
(Ⅱ)若,數列
的前n項和為
,求不超過
的最大整數的值.
科目:高中數學 來源: 題型:解答題
已知各項均為正數的等比數列{an}的首項a1=2,Sn為其前n項和,若5S1,S3,3S2成等差數列.
(1)求數列{an}的通項公式;
(2)設bn=log2an,cn=,記數列{cn}的前n項和Tn.若對?n∈N*,Tn≤k(n+4)恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
(1)若是常數,問當
滿足什么條件時,函數
有最大值,并求出
取最大值時
的值;
(2)是否存在實數對同時滿足條件:(甲)
取最大值時
的值與
取最小值的
值相同,(乙)
?
(3)把滿足條件(甲)的實數對的集合記作A,設
,求使
的
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,設曲線
在點
處的切線與
軸的交點為
,其中
為正實數.
(1)用表示
;
(2),若
,試證明數列
為等比數列,并求數列
的通項公式;
(3)若數列的前
項和
,記數列
的前
項和
,求
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com