根據等差數列前n項和S
n=an
2+bn,則有

,求出a、b的值,由此可知 S
40=-

×40=484.
解答:解:設S
n=an
2+bn,
則有

,
解得 a=

,b=

,
∴S
40=-

×1600+

×40=484.
故選D.
練習冊系列答案
相關習題
科目:高中數學
來源:不詳
題型:解答題
設

是公比大于1的等比數列,

為數列

的前

項和.已知

,
且

構成等差數列.
(1)求數列

的通項公式;
(2)令

,求數列

的前

項和

.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:單選題
設函數f(x)滿足f(n+1)=

(n∈N*)且f(1)=2,則f(20)為( 。
查看答案和解析>>
科目:高中數學
來源:不詳
題型:單選題
數列

中,如果

=3n(n=1,2

,3,…) ,那么這個數列是 ( )
A.公差為2的等差數列 | B.公差為3的等差數列
 | C.首項為3的等比數列 | D.首項為1的等比數列 |
查看答案和解析>>
科目:高中數學
來源:不詳
題型:填空題
等差數列

的前

項和為

,且

,若存在自然數

,使得

,則當

時,

與

的大小關系是 。
查看答案和解析>>
久久精品免费一区二区视