【題目】如圖,在平面直角坐標系xOy中,已知橢圓 +
=1(a>b>0)的離心率為
,C為橢圓上位于第一象限內的一點.
(1)若點C的坐標為(2, ),求a,b的值;
(2)設A為橢圓的左頂點,B為橢圓上一點,且 =
,求直線AB的斜率.
【答案】
(1)
解:由題意可知:橢圓的離心率e= =
=
,則
=
,①
由點C在橢圓上,將(2, )代入橢圓方程,
,②
解得:a2=9,b2=5,
∴a=3,b= ,
(2)
解:方法一:由(1)可知: =
,則橢圓方程:5x2+9y2=5a2,
設直線OC的方程為x=my(m>0),B(x1,y1),C(x2,y2),
,消去x整理得:5m2y2+9y2=5a2,
∴y2= ,由y2>0,則y2=
,
由 =
,則AB∥OC,設直線AB的方程為x=my﹣a,
則 ,整理得:(5m2+9)y2﹣10amy=0,
由y=0,或y1= ,
由 =
,則(x1+a,y1)=(
x2,
y2),
則y2=2y1,
則 =2×
,(m>0),
解得:m= ,
則直線AB的斜率 =
;
方法二:由(1)可知:橢圓方程5x2+9y2=5a2,則A(﹣a,0),
B(x1,y1),C(x2,y2),
由 =
,則(x1+a,y1)=(
x2,vy2),則y2=2y1,
由B,C在橢圓上,
∴ ,解得:
,
則直線直線AB的斜率k= =
.
直線AB的斜率
【解析】(1)利用拋物線的離心率求得 =
,將(2,
)代入橢圓方程,即可求得a和b的值;(2)方法二:設直線OC的斜率,代入橢圓方程,求得C的縱坐標,則直線直線AB的方程為x=my﹣a,代入橢圓方程,求得B的縱坐標,由
=
,則直線直線AB的斜率k=
=
;方法二:由
=
,y2=2y1 , 將B和C代入橢圓方程,即可求得C點坐標,利用直線的離心率公式即可求得直線AB的斜率.
科目:高中數學 來源: 題型:
【題目】去年“十一”期間,昆曲高速公路車輛較多.某調查公司在曲靖收費站從7座以下小型汽車中按進收費站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進行抽樣調查,將他們在某段高速公路的車速()分成六段:
,
,
,
,
,
后,得到如圖的頻率分布直方圖.
(I)調查公司在抽樣時用到的是哪種抽樣方法?
(II)求這40輛小型汽車車速的眾數和中位數的估計值;
(III)若從這40輛車速在的小型汽車中任意抽取2輛,求抽出的2輛車車速都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究小組欲研究晝夜溫差大小與患感冒人數之間的關系,統計得到1至6月份每月9號的晝夜溫差與因患感冒而就診的人數
的數據,如下表:
日期 | 1月9號 | 2月9號 | 3月9號 | 4月9號 | 5月9號 | 6月9號 |
10 | 11 | 13 | 12 | 8 | 6 | |
22 | 25 | 29 | 26 | 16 | 12 |
該研究小組的研究方案是:先從這6組數據中選取2組,用剩下的4組數據求回歸方程,再用之前被選取的2組數據進行檢驗.
(1)若選取1月和6月的數據作為檢驗數據,請根據剩下的2至5月的數據,求出關于
的線性回歸方程;(計算結果保留最簡分數)
(2)若用(1)中所求的回歸方程作預報,得到的估計數據與所選出的檢驗數據的誤差不超過2人,則認為得到的回歸方程是理想的,試問該研究小組所得回歸方程是否理想?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為6,離心率為 ,F2為橢圓的右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)點M在圓x2+y2=8上,且M在第一象限,過M作圓x2+y2=8的切線交橢圓于P,Q兩點,判斷△PF2Q的周長是否為定值并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,g(x)=lnx,其中e為自然對數的底數.
(1)求函數y=f(x)g(x)在x=1處的切線方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數,求證:λ>e;
(3)若對任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數f'(x)的圖象的一個對稱中心是
,則f(x)的最小正周期是( )
A.
B.
C.π
D.2π
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)全網傳播的融合指數是衡量電視媒體在中國網民中影響了的綜合指標.根據相關報道提供的全網傳播2015年某全國性大型活動的“省級衛視新聞臺”融合指數的數據,對名列前20名的“省級衛視新聞臺”的融合指數進行分組統計,結果如表所示.
組號 | 分組 | 頻數 |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
(Ⅰ)現從融合指數在和
內的“省級衛視新聞臺”中隨機抽取2家進行調研,求至少有1家的融合指數在
的概率;
(Ⅱ)根據分組統計表求這20家“省級衛視新聞臺”的融合指數的平均數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com