精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,過橢圓右焦點的直線交橢圓兩點, 的中點,且直線的斜率為

求橢圓的方程;

設另一直線與橢圓交于兩點,原點到直線的距離為,求面積的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】試題分析:(Ⅰ)由題意,焦點,所以,再由,得,

進而得,即可得到橢圓的標準方程.

(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得;

②設直線的方程為: ,由題意,原點到直線的距離得到

設交點的坐標分別為,聯立方程組,得到,再由弦長公式,利用均值不等式,即可求解最值,進而得到面積的最值.

試題解析:

(Ⅰ)由題意,直線軸交于焦點: , ,設, , ,則:

,

,又 ,

即橢圓的方程為:

(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得;

②當直線的斜率存在時且不為0時,設直線的方程為: ,由題意,原點到直線的距離為,故,

.設交點的坐標分別為: ,

則: ,

由題意,

,

當且僅當,即時等號成立,

綜上所述,當直線的斜率時,

時, 面積的最大值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知.

(1)設, ,若函數存在零點,求的取值范圍;

(2)若是偶函數,設,若函數的圖象只有一個公共點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=a4x﹣a2x+1+1﹣b(a>0)在區間[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求實數m的值;
(2)若A∩C=,求實數b的取值范圍;
(3)若A∪B=B,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣a是奇函數
(1)求實數a的值;
(2)判斷函數在R上的單調性并用函數單調性的定義證明;
(3)對任意的實數x,不等式f(x)<m﹣1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若二次函數f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數的f(x)的一個零點為1. (Ⅰ)求函數f(x)的解析式;
(Ⅱ)對任意的 ,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業為了對生產的一種新產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到以下數據:

單價x(元/件)

60

62

64

66

68

70

銷量y(件)

91

84

81

75

70

67

I)畫出散點圖,并求關于的回歸方程;

II)已知該產品的成本是36/件,預計在今后的銷售中,銷量與單價仍然服從(I)中的關系,為使企業獲得最大利潤,該產品的單價應定為多少元(精確到元)?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 為自然對數的底數.

(1)若函數的圖象在點處的切線方程為,求實數 的值;

(2)當時,若存在 ,使成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數方程為為參數, ),直線的極坐標方程為.

(1)寫出曲線的普通方程和直線的直角坐標方程;

(2)為曲線上任意一點, 為直線任意一點,求的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视